您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > I2C总线原理及应用实例
I2C总线原理及应用实例[来源]I2C(Inter-IntegratedCircuit,内置集成电路总线)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。1I2C总线特点I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。I2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。2I2C总线工作原理2.1总线的构成及信号类型I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。目前有很多半导体集成电路上都集成了I2C接口。带有I2C接口的单片机有:CYGNAL的C8051F0XX系列,PHILIPSP87LPC7XX系列,MICROCHIP的PIC16C6XX系列等。很多外围器件如存储器、监控芯片等也提供I2C接口。3总线基本操作I2C规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件都可以工作于接收和发送状态。总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。SDA线上的数据状态仅在SCL为低电平的期间才能改变,SCL为高电平的期间,SDA状态的改变被用来表示起始和停止条件。参见图1。图1串行总线上的数据传送顺序3.1控制字节在起始条件之后,必须是器件的控制字节,其中高四位为器件类型识别符(不同的芯片类型有不同的定义,EEPROM一般应为1010),接着三位为片选,最后一位为读写位,当为1时为读操作,为0时为写操作。如图2所示。图2控制字节配置3.2写操作写操作分为字节写和页面写两种操作,对于页面写根据芯片的一次装载的字节不同有所不同。关于页面写的地址、应答和数据传送的时序参见图3。图3页面写3.3读操作读操作有三种基本操作:当前地址读、随机读和顺序读。图4给出的是顺序读的时序图。应当注意的是:最后一个读操作的第9个时钟周期不是“不关心”。为了结束读操作,主机必须在第9个周期间发出停止条件或者在第9个时钟周期内保持SDA为高电平、然后发出停止条件。图4顺序读4实例:X24C04与MCS-51单片机软硬件的实现X24C04是XICOR公司的CMOS4096位串行EEPROM,内部组织成512×8位。16字节页面写。与MCS-51单片机接口如图5所示。由于SDA是漏极开路输出,且可以与任何数目的漏极开路或集电极开路输出“线或”(wire-Ored)连接。上拉电阻的选择可参考X24C04的数据手册。下面是通过I2C接口对X24C04进行单字节写操作的例程。流程图及源程序如下:图5X24C04与51单片机接口;名称:BSENT;描述:写字节;功能:写一个字节;调用程序:无;输入参数:A;输出参数:无BSEND:MOVR2,#08H;1字节8位SENDA:CLRP3.2;RLCA;左移一位MOVP3.3,C;写一位SETBP3.2DJNZR2,SENDA;写完8个字节?CLRP3.2;应答信号SETBP3.3SETBP3.2RET图6流程图5结束语在I2C总线的应用中应注意的事项总结为以下几点:1)严格按照时序图的要求进行操作,2)若与口线上带内部上拉电阻的单片机接口连接,可以不外加上拉电阻。3)程序中为配合相应的传输速率,在对口线操作的指令后可用NOP指令加一定的延时。4)为了减少意外的干扰信号将EEPROM内的数据改写可用外部写保护引脚(如果有),或者在EEPROM内部没有用的空间写入标志字,每次上电时或复位时做一次检测,判断EEPROM是否被意外改写。++++++++++++++++++++++++++++++++++++++基于DSP与CPLD的I2C总线接口的设计与实现上传者:Lamborghini浏览次数:86摘要:介绍了一种使用CPLD完成DSP芯片I2C总线接口的设计和实现方案,重点叙述了I2C核的设计思想。关键词:PWMSG3524控制器带有I2C总线接口的器件可以十分方便地将一个或多个单片机及外围器件组成单片机系统。尽管这种总线结构没有并行总线那样大的吞吐能力,但由于连接线和连接引脚少,因此其构成的系统价格低、器件间总线连接简单、结构紧凑,而且在总线上增加器件不影响系统的正常工作,系统修改和可扩展性好。即使有不同时钟速度的器件连接到总线上,也能很方便地确定总线的时钟。如今,为了提高系统的数据处理精度和处理速度,在家用电器、通讯设备及各类电子产品中已广泛应用DSP芯片。但大多数的尚未提供I2C总线接口,本文将介绍一种基于CPLD的已实现的高速DSP的I2C总线接口方案。图1I2C总线接口电路结构点击放大1I2C通信协议I2C总线是一种用于IC器件之间的二线制总线。它通过SDA(串行数据线)及SCL(串行同步时钟线)两根线在连到总线上的器件之间传送信息,通过软件寻址实现片选,减少了器件片选线的连接。CPU不仅能通过指令将某个功能单元电路挂靠或摘离总线,还可对该单元的工作状况进行检测,从而实现对硬件系统的扩展与控制。I2C总线接口电路结构如图1所示,I2C总线时序图如图2所示。I2C总线根据器件的功能通过软件程序使其可工作于发送(主)或接收(从)方式。总线上主和从(即发送和接收)的关系不是一成不变的,而是取决于数据传送的方向。SDA和SCL均为双向I/O线,通过上拉电阻接正电源。当总线空闲时,两根线都是高电平。连接总线的器件的输出级必须是集电极或漏极开路的,以具有线“与”功能。I2C总线的数据传送速率在标准工作方式下为100kbit/s,在快速方式下,最高传送速率可达400kbit/s。在数据传送过程中,必须确认数据传送的开始和结束信号(也称启动和停止信号)。当时钟线SCL为高电平时,数据线SDA由高电平跳变为低电平则定义为“开始”信号;当SCL为高电平时,SDA由低电平跳变为高电平则定义为“结束”信号。开始和结束信号都由主器件产生。在开始信号以后,总线即被认为处于忙状态;在结束信号以后的一段时间内,总线被认为是空闲状态。在I2C总线开始信号后,依次送出器件地址和数据,I2C总线上每次传送的数据字节数不限,但每一个字节必须为8位,而且每个传送的字节后面必须跟一个认可位(第9位),也叫应答位(ACK)。从器件的响应信号结束后,SDA线返回高电平,进入下一个传送周期。2设计方案本文以DSP芯片ADSP21992与时钟芯片PCF8583的控制接口为例,说明基于CPLD的I2C总线接口设计方案。ADSP21992是2003年最新推出的160MIPS、带CAN通信接口的适合于高精度工业控制和信号处理的高性能DSP芯片。它带有48K片内RAM、SPORT通信接口、SPI通信接口、8通道14位A/D转换器以及PWM等。PCF8583是一款带有256字节静态CMOSRAM的时钟/日历芯片。地址和数据严格按照双向双线制I2C总线协议传输。内置地址寄存器在每次读/写后自动递增。2.1系统结构设计系统的基本功能是通过CPLD的I2C总线接口完成ADSP21992(主控芯片)与PCF8583的数据交换。系统框图如图3所示。系统主要由两个部分组成:一是DSP与CPLD的接口;另一是I2C核。为了能在DSP指定的时刻读/写PCF8583的数据,使用DSP的读写信号、同步时钟和最高位地址控制数据的传输。最高位地址作为控制信号是因为DSP的I/O口比较少,必须优先供应给其它外设,因此用它来产生DSP提供给I2C核的片选信号。而DSP的地址总线位数较多,最高位一般使用不到,这样正好可以充分利用资源。2.2I2C核I2C核原理示意图如图4所示。整个I2C核由控制模块和I/O模块构成。其中,控制模块包括控制信号发生部分和时钟开关,I/O模块包括数据缓存和同步时钟缓存。当DSP的最高地址位出现一个有效信号时,便会使I2C核内的触发器产生一个全局使能信号EN?熏它将会启动时钟、计数器和其它控制信号,但数据不会出现交换。如果此时DSP的读/写同步产生,则会启动相应的读/写进程,进行数据传输。I2C核的关键技术是:①用计数器和全局使能信号EN配合触发进程。由于I2C核的片选信号EN是由触发产生的,不能象电平信号一样由DSP的I/O控制,因此只能通过精确的计数器定时和读/写使能信号共同判别控制。读/写使能信号WR_EN/RD_EN也象EN那样由触发产生,因此也要用同样的方法判别。②同步时钟的产生。从图2中可以看到,数据在同步时钟的高电平脉冲时必须保持稳定,如果此时发生变化将会被视为一个控制信号,而通信也会被中断。因此,同步时钟的高电平脉冲一定要在有效数据的中间出现。而所需的控制信号必须在同步时钟正脉冲的时候出现。③对数据总线进行三态设置。因为SDA和DSP_DATA都是双向数据线,在写SDA和DSP_DATA的进程中必须设置高阻态,否则会出现数据线状态“不确定”。图5I2C核工作时序图点击放大2.3DSP与CPLD的接口模块根据DSP的时序,DSP与CPLD之间必须根据双方(ADSP21992和PCF8583)的时序制定一个握手协议。当读程序时,由于I2C总线协议只能支持最高400kbit/s的传输速率,而DSP的同步时钟可达几十兆赫。因此,DSP必须等到I2C核把PCF8583的数据读到CPLD后才能获得正确的数据(这里可以通过设立一个忙标志来实现)。而当写程序时,为了节约CPLD的资源(数据缓存特别占用资源),可以设置DSP定时输出数据给I2C核,让I2C核的一次只送一个数据。2.4硬件设计此I2C核可外挂多个带有I2C总线接口的芯片,可以通过发送不同的器件地址来选择。SDA和SCL线必须接上拉电阻。此外,同步时钟不能太高,否则会影响数据传输的稳定性。2.5时序(1)I2C核时序以写为例,I2C核时序如图5所示。(2)PCF8583时序PCF8583的数据是8bit一个存储单元,共256个字节,所以只需要8位地址,而且器件本身有两种寻址方式:
本文标题:I2C总线原理及应用实例
链接地址:https://www.777doc.com/doc-3383942 .html