您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 2011年陕西省高考数学试卷(理科)答案与解析
12011年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.(5分)(2011•陕西)设,是向量,命题“若≠﹣,则||=||”的逆命题是()A.若≠﹣,则||=||”B.若=﹣,则||≠||C.若≠,则||≠||D.||=||,则≠﹣【考点】四种命题间的逆否关系.菁优网版权所有【专题】简易逻辑.【分析】根据所给的原命题,看清题设和结论,把原命题的题设和结论互换位置,得到要求的命题的逆命题.【解答】解:原命题是:“若≠﹣,则||=||”,它的逆命题是把题设和结论互换位置,即逆命题是:若||=||,则≠﹣,故选D.【点评】本题考查四种命题,考查把其中一个看成是原命题,来求出它的逆命题,否命题,逆否命题,本题是一个基础题.2.(5分)(2011•陕西)设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是()A.y2=﹣8xB.y2=8xC.y2=﹣4xD.y2=4x【考点】抛物线的标准方程.菁优网版权所有【专题】计算题.【分析】根据准线方程求得p,则抛物线的标准方程可得.【解答】解:∵准线方程为x=﹣2∴=2∴p=4∴抛物线的方程为y2=8x故选B【点评】本题主要考查了抛物线的标准方程.考查了考生对抛物线基础知识的掌握.3.(5分)(2011•陕西)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()2A.B.C.D.【考点】函数奇偶性的判断;函数的周期性.菁优网版权所有【专题】数形结合.【分析】由定义知,函数为偶函数,先判断A、C两项,图象对应的函数为奇函数,不符合题意;再取特殊值x=0,可得f(2)=f(0),可知B选项符合要求.【解答】解:∵f(﹣x)=f(x)∴函数图象关于y轴对称,排除A、C两个选项又∵f(x+2)=f(x)∴函数的周期为2,取x=0可得f(2)=f(0)排除D选项,说明B选项正确故答案为B【点评】利用函数图象的对称性是判断一个函数为奇函数或偶函数的一个重要指标,周期性与奇偶性相结合是函数题的一种常规类型.4.(5分)(2011•陕西)(x2﹣x﹣4)6(x∈R)展开式中的常数项是()A.﹣20B.﹣15C.15D.20【考点】二项式系数的性质.菁优网版权所有【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为0求出展开式的常数项.【解答】解:展开式的通项为Tr+1=(﹣1)rC6rx12﹣3r令12﹣3r=0,得r=4所以展开式的常数项为C64=15故选C【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.(5分)(2011•陕西)某几何体的三视图如图所示,则它的体积是()3A.B.C.8﹣2πD.【考点】由三视图求面积、体积.菁优网版权所有【专题】计算题.【分析】三视图复原的几何体是正方体,除去一个倒放的圆锥,根据三视图的数据,求出几何体的体积.【解答】解:三视图复原的几何体是棱长为:2的正方体,除去一个倒放的圆锥,圆锥的高为:2,底面半径为:1;所以几何体的体积是:8﹣=故选A.【点评】本题是基础题,考查三视图复原几何体的判定,几何体的体积的求法,考查空间想象能力,计算能力,常考题型.6.(5分)(2011•陕西)函数f(x)=﹣cosx在[0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【考点】函数零点的判定定理.菁优网版权所有【专题】计算题;压轴题;分类讨论.【分析】根据余弦函数的最大值为1,可知函数在[π,+∞)上为正值,在此区间上函数没有零点,问题转化为讨论函数在区间[0,π)上的零点的求解,利用导数讨论单调性即可.【解答】解:f′(x)=+sinx①当x∈[0.π)时,>0且sinx>0,故f′(x)>0∴函数在[0,π)上为单调增取x=<0,而>0可得函数在区间(0,π)有唯一零点②当x≥π时,>1且cosx≤1故函数在区间[π,+∞)上恒为正值,没有零点综上所述,函数在区间[0,+∞)上有唯一零点4【点评】在[0,+∞)内看函数的单调性不太容易,因此将所给区间分为两段来解决是本题的关键所在.7.(5分)(2011•陕西)设集合M={y|y=|cos2x﹣sin2x|,x∈R},N={x||x﹣|<,i为虚数单位,x∈R},则M∩N为()A.(0,1)B.(0,1]C.[0,1)D.[0,1]【考点】交集及其运算;绝对值不等式的解法.菁优网版权所有【专题】计算题.【分析】通过三角函数的二倍角公式化简集合M,利用三角函数的有界性求出集合M;利用复数的模的公式化简集合N;利用集合的交集的定义求出交集.【解答】解:∵M={y|y=|cos2x﹣sin2x|}={y|y=|cos2x|}={y|0≤y≤1}={x|﹣1<x<1}∴M∩N={x|0≤x<1}故选C【点评】本题考查三角函数的二倍角公式、三角函数的有界性、复数的模的公式、集合的交集的定义.8.(5分)(2011•陕西)如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分.当x1=6,x2=9,p=8.5时,x3等于()A.11B.10C.8D.7【考点】选择结构.菁优网版权所有【专题】创新题型.【分析】利用给出的程序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分.5【解答】解:根据提供的该算法的程序框图,该题的最后得分是三个分数中差距小的两个分数的平均分.根据x1=6,x2=9,不满足|x1﹣x2|≤2,故进入循环体,输入x3,判断x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分.因此由8.5=,解出x3=8.故选C.【点评】本题考查学生对算法基本逻辑结构中的循环结构和条结构的认识,考查学生对赋值语句的理解和认识,考查学生对程序框图表示算法的理解和认识能力,考查学生的算法思想和简单的计算问题.9.(5分)(2011•陕西)设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()A.x和y的相关系数为直线l的斜率B.x和y的相关系数在0到1之间C.当n为偶数时,分布在l两侧的样本点的个数一定相同D.直线l过点(,)【考点】线性回归方程.菁优网版权所有【专题】常规题型;压轴题.【分析】对于所给的线性回归方程对应的直线,针对于直线的特点,回归直线一定通过这组数据的样本中心点,得到结果.【解答】解:直线l是由这些样本点通过最小二乘法得到的线性回归直线,回归直线方程一定过样本中心点,故选D.【点评】本题考查线性回归方程的性质,考查样本中心点一定在回归直线上,本题是一个基础题,不需要运算就可以看出结果.10.(5分)(2011•陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.菁优网版权所有【专题】计算题;压轴题.【分析】利用分步计数原理求出甲、乙最后一小时他们所在的景点结果个数;利用古典概型概率公式求出值.【解答】解:甲、乙最后一小时他们所在的景点共有6×6=36中情况6甲、乙最后一小时他们同在一个景点共有6种情况由古典概型概率公式后一小时他们同在一个景点的概率是P==故选D【点评】本题考查利用分步计数原理求完成事件的方法数、考查古典概型概率公式.二、填空题:(本大题共5小题,每小题5分,共25分)11.(5分)(2011•陕西)设f(x)=,若f(f(1))=1,则a=1.【考点】函数的值.菁优网版权所有【专题】计算题.【分析】先根据分段函数求出f(1)的值,然后将0代入x≤0的解析式,最后根据定积分的定义建立等式关系,解之即可.【解答】解:∵f(x)=∴f(1)=0,则f(f(1))=f(0)=1即∫0a3t2dt=1=t3|0a=a3解得:a=1故答案为:1.【点评】本题主要考查了分段函数的应用,以及定积分的求解,同时考查了计算能力,属于基础题.12.(5分)(2011•陕西)设n∈N+,一元二次方程x2﹣4x+n=0有整数根的充要条件是n=3或4.【考点】充要条件;一元二次方程的根的分布与系数的关系.菁优网版权所有【专题】简易逻辑.【分析】由一元二次方程有实数根⇔△≥0得n≤4;又n∈N+,则分别讨论n为1,2,3,4时的情况即可.【解答】解:一元二次方程x2﹣4x+n=0有实数根⇔(﹣4)2﹣4n≥0⇔n≤4;又n∈N+,则n=4时,方程x2﹣4x+4=0,有整数根2;n=3时,方程x2﹣4x+3=0,有整数根1,3;n=2时,方程x2﹣4x+2=0,无整数根;n=1时,方程x2﹣4x+1=0,无整数根.所以n=3或n=4.故答案为:3或4.【点评】本题考查一元二次方程有实根的充要条件及分类讨论的策略.13.(5分)(2011•陕西)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=497…照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.【考点】归纳推理.菁优网版权所有【专题】计算题.【分析】观察所给的等式,等号右边是12,32,52,72…第n个应该是(2n﹣1)2,左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,写出结果.【解答】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…等号右边是12,32,52,72…第n个应该是(2n﹣1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2,故答案为:n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.14.(5分)(2011•陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为2000(米).【考点】等差数列的前n项和.菁优网版权所有【专题】应用题;压轴题.【分析】设在第n棵树旁放置所有树苗,利用等差数列求和公式,得出领取树苗往返所走的路程总和f(n)的表达式,再利用二次函数求最值的公式,求出这个最值.【解答】解:记公路一侧所植的树依次记为第1棵、第2棵、第3棵、…、第20棵设在第n棵树旁放置所有树苗,领取树苗往返所走的路程总和为f(n)(n为正整数)则f(n)=[10+20+…+10(n﹣1)]+[10+20+…+10(20﹣n)]=10[1+2+…+(n﹣1)]+10[1+2+…+(20﹣n)]=5(n2﹣n)+5(20﹣n)(21﹣n)=5(n2﹣n)+5(n2﹣41n+420)=10n2﹣210n+2100,∴f(n)=20(n2﹣21n+210),相应的二次函数图象关于n=10.5对称,结合n为整数,可得当n=10或11时,f(n)的最小值为2000米.故答案为:2000【点评】本题利用数列求和公式,建立函数模型,再用二次函数来解题,属于常见题型.15.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式a≥|x+1|+|x﹣2|存在实数解,则实数a的取值范围是[3,+∞).8B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=2.C.(坐标系与参数方程选做题)
本文标题:2011年陕西省高考数学试卷(理科)答案与解析
链接地址:https://www.777doc.com/doc-3397857 .html