您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 整理第八章二元一次方程组》复习课件
第八章二元一次方程组学习目标:•1、能熟练、准确地解二元一次方程组;•2、会用二元一次方程组解决实际问题;•3、通过对本章的内容进行回顾和总结,能把握各知识点间的联系,进一步感受方程(组)模型的重要性。一.基本知识二元一次方程二元一次方程的一个解二元一次方程组二元一次方程组的解解二元一次方程组结构:实际背景二元一次方程及二元一次方程组求解应用方法思想列二元一次方程组解应用题解应用题消元代入消员加减消元1.二元一次方程:通过化简后,只有两个未知数,并且所含未知数的项的次数都是1,系数都不是0的整式方程,叫做二元一次方程.2.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:由两个一次方程组成,共有两个未知数的方程组,叫做二元一次方程组.二、有关概念4.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.5.方程组的解法根据方程未知数的系数特征确定用哪一种解法.基本思想或思路——消元常用方法————代入法和加减法用代入法解二元一次方程组的步骤:(1).求表达式:从方程组中选一个系数比较简单的方程,将此方程中的一个未知数,如y,用含x的代数式表示;(2).把这个含x的代数式代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3).解一元一次方程,求出x的值;(4).再把求出的x的值代入变形后的方程,求出y的值.用加减法解二元一次方程组的步骤:(1).利用等式性质把一个或两个方程的两边都乘以适当的数,变换两个方程的某一个未知数的系数,使其绝对值相等;(2).把变换系数后的两个方程的两边分别相加或相减,消去一个未知数,得一元一次方程;(3).解这个一元一次方程,求得一个未知数的值;(4).把所求的这个未知的值代入方程组中较为简便的一个方程,求出另一个未知数,从而得到方程的解.6.列二元一次方程解决实际问题的一般步骤:审:设:列:解:答:审清题目中的等量关系.设未知数.根据等量关系,列出方程组.解方程组,求出未知数.检验所求出未知数是否符合题意,写出答案.二元一次方程组和一次函数的图象的关系方程组的解是对应的两条直线的交点坐标两条线的交点坐标是对应的方程组的解二元一次方程和一次函数的图象的关系以二元一次方程的解为坐标的点都在对应的函数图象上.一次函数图象上的点的坐标都适合对应的二元一次方程.1.已知方程组的解是则,.2.已知代数式,当时,它的值是-5;当时,它的值是4,求p,q的值.3.方程组的解互为相反数,求a的值.4.甲、乙两位同学一同解方程组,甲正确解出方程组的解为,而乙因为看错了,得解为试求的值.21,4xymxyn1,2.xymnqpxx21x2x1872,253ayxayx.23,2ycxbyax.1,1yxc.6,2yxcba,,三、知识应用5.二元一次方程2m+3n=11()A.任何一对有理数都是它的解.B.只有两组解.C.只有两组正整数解.D.有负整数解.C6.若点P(x-y,3x+y)与点Q(-1,-5)关于X轴对称,则x+y=______.37.已知|2x+3y+5|+(3x+2Y-25)2=0,则x-y=______.-308.若两个多边形的边数之比是2:3,两个多边形的内角和是1980°,求这两个多边形的边数.6和99.方程组中,x与y的和12,求k的值.25332kyxkyx264xkyk解得:K=14解法1:解这个方程组,得依题意:x+y=12所以(2k-6)+(4-k)=12解法2:根据题意,得2335212xykxykxy解这个方程组,得k=14四.列二元一次方程组解应用题专题训练:列方程组解应用题的基本步骤:1、审题,设未知数。2、找等量关系。3、列出方程组,并解答。4、检验并答。1.行程问题:1.相遇问题:甲的路程+乙的路程=总的路程(环形跑道):甲的路程+乙的路程=一圈长2.追及问题:快者的路程-慢者的路程=原来相距路程(环形跑道):快者的路程-慢者的路程=一圈长3.顺逆问题:顺速=静速+水(风)速逆速=静速-水(风)速例1.某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时75千米的速度行驶,就会提前24分钟到达乙地,求甲、乙两地间的距离.、25052755stst解:设甲、乙两地间的距离为S千米,规定时间为t小时,根据题意得方程组例2.甲、乙二人以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2分钟相遇一次;如果同向而行,每隔6分钟相遇一次.已知甲比乙跑得快,甲、乙每分钟各跑多少圈?解:设甲、乙二人每分钟各跑x、y圈,根据题意得方程组2()16()1xyxy解得1316xy答:甲、乙二人每分钟各跑、圈,13161.某学校现有甲种材料35㎏,乙种材料29㎏,制作A.B两种型号的工艺品,用料情况如下表:需甲种材料需乙种材料1件A型工艺品0.9㎏0.3㎏1件B型工艺品0.4㎏1㎏(1)利用这些材料能制作A.B两种工艺品各多少件?(2)若每公斤甲.乙种材料分别为8元和10元,问制作A.B两种型号的工艺品各需材料多少钱?2.图表问题1.入世后,国内各汽车企业展开价格大战,汽车价格大幅下降,有些型号的汽车供不应求。某汽车生产厂接受了一份订单,要在规定的日期内生产一批汽车,如果每天生产35辆,则差10辆完成任务,如果每天生产40辆,则可提前半天完成任务,问订单要多少辆汽车,规定日期是多少天?3.总量不变问题解:设订单要辆x汽车,规定日期是y天,根据题意得方程组351040(0.5)yxyx2206xy解这个方程组,得答:订单要220辆汽车,规定日期是6天4.销售问题:标价×折扣=售价售价-进价=利润利润率=利润售价进价进价进价1.已知甲.乙两种商品的标价和为100元,因市场变化,甲商品打9折,乙商品提价5﹪,调价后,甲.乙两种商品的售价和比标价和提高了2﹪,求甲.乙两种商品的标价各是多少?答:甲种商品的标价是20元,乙种商品的标价是80元.解:设甲、乙两种商品的标价分别为x、y元,根据题意,得100952(1)100(1)10100100xyxy解这个方程组,得2080xy例:某车间每天能生产甲种零件120个,或者乙种零件100个,或者丙种零件200个,甲,乙,丙3种零件分别取3个,2个,1个,才能配一套,要在30天内生产最多的成套产品,问甲,乙,丙3种零件各应生产多少天?:,,.30120:100:2003:2:1301551243:,,315,12,3.xyzxyzxyzxyzxxzyyzz解设甲种零件生产天乙种生产天丙种生产天根据题意得化简得解之得答甲乙丙种零件各应生产天天天5、配套问题以下为备选练习题1.解二元一次方程组的基本思路是2.用加减法解方程组{由①与②————直接消去——3.用加减法解方程组{由①与②——,可直接消去———2x-5y=7①2x+3y=2②4x+5y=28①6x-5y=12②消元相减x相加y4.用加减法解方程组3x-5y=6①2x-5y=7②具体解法如下(1)①-②得x=1(2)把x=1代入①得y=-1.(3)∴x=1y=-1其中出现错误的一步是()A(1)B(2)C(3)A5、方程2x+3y=8的解()A、只有一个B、只有两个C、只有三个D、有无数个6、下列属于二元一次方程组的是()A、B0153yxyx0153yxyxC、x+y=5Dx2+y2=11221xyxyDA7)用加减法解方程组{,若要消去Y,则应由①×?,②×?再相加,从而消去y。3x+4y=16①5x-6y=33②ax+by=2ax-by=48.关于x、y的二元一次方程组2x+3y=104x-5y=-2的解与的解相同,求a、b的值大显身手解:根据题意,只要将方程组的解代入方程组,就可求出a,b的值ax+by=2ax-by=42x+3y=104x-5y=-22x+3y=104x-5y=-2解方程组得x=2y=2ax+by=2ax-by=4将x=2y=2代入方程组得2a+2b=22a-2b=4解得3a=21b=-2∴a=,b=32129、二元一次方程组的解中,x、y的值相等,则k=.3)1(134ykkxyx1110、先阅读材料,后解方程组.材料:解方程组时,可由①得x-y=1③将③代入②得4×1-y=5.即y=-1.进一步得这种解方程组的方法称为“整体代入法”.请用整体代入法解方程组9275320232yyxyx5)(401yyxyx①②10yx下列是二元一次方程组的是()+y=3x12x+y=0(A)3x-1=02y=5(B)x+y=73y+z=4(c)5x-y=-23y+x=4(D)2B什么是二元一次方程?考点一:已知方程3x-5y=4是二元一次方程,则m+n=m+n-7m-n-1已知方程3x-5y=4是二元一次方程,则m+n=m+n-7m-n-1m–n-1=1m+n-7=1m=5n=38练习:A卷一、1三、1考点二:解的定义练习:一、4,7二、3,41、已知是方程3x-3y=m和5x+y=n的公共解,则m2-3n=.3,2yx246二、教科书第116页习题2.习题32.A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分。求飞机的平均速度与风速。3.一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,第一天比第二天少走2km,第一天和第二天行军的平均速度各是多少?一、填空一架飞机的速度为Xkm/h,风速为Ykm/h则该飞机顺风速度为,逆风速度为。()km/h()km/hX+YX–Y2.某工厂去年的得润(总产值-总支出)为200万元,今年总产值比去看增加了20%,总支出比去年减少了10%,今年的利润为780万元。去年的总产值、总支出各是多少万元?780(1-10%)y(1+20%)x今年200yx去年利润(万元)总支出(万元)总产值(万元)解:设去年的总产值为x万元,总支出为y万元.1、鸡兔同笼笼内若干只鸡和兔子,他们共有50个头和140只脚,问鸡和兔子个有多少只?3、已知一个两位数,十位数字比个位数字大3,将十位数字与个位数字对调所得的新数比原数小27,求这个两位数。十位个位三位数的代数式原数新数若设十位数字为x,个位数字为y,则xy10x+yyx10y+x4.一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,第一天比第二天少走2km,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为Xkm/h第二天行军的平均速度为Ykm/h根据题意,可列方程组:4X+5Y=985Y-4X=2解之得:X=12Y=10答:第一天行军的平均速度为12km/h;第二天行军的平均速度为10km/h。5、小明骑摩托车在公路上匀速行驶,12:00时看到里程碑上的数是一个两位数,它的数字之和是7;13:00时看里程碑上的两位数与12:00时看到的个位数和十位数颠倒了;14:00时看到里程碑上的数比12:00时看到的两位数中间多了个零,小明在12:00时看到里程碑上的数字是多少?解:设小明在12:00时看到的数的十位数字是x,个位的数字是y,那么x+y=7(10y+x)-(10x+y)=(100x+y)-(10y+x)答:小明在12:00时看到的数字是16.x=1y=6解之:例1.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时相遇,6小时后
本文标题:整理第八章二元一次方程组》复习课件
链接地址:https://www.777doc.com/doc-3432224 .html