您好,欢迎访问三七文档
1方案设计(一)例1某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?例2有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是__________元;甲公司用户通话100分钟以后,每分钟的通话费为_________元;(2)李女士买了一部手机,请问她选择哪家公司更合算?例3梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.练习12007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配AB,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮原料名称饮料名称甲乙A20克40克B30克20克月租费通话费25元0.15元/分钟图15()t分()y元O10020020402助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?2光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.3我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种ABC每辆汽车运载量(吨)654每吨脐橙获得(百元)121610(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.(二)例1如图,村庄BA、位于一条小河的两侧,若河岸ba、彼此平行,现在要建设一座与河岸垂直的桥CD,问如何设计桥址,才能使A村到B村的路程最近?例2在一次数学探究型学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正340方形制片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.它们首先设计了如图所示1-1的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示1-2的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.例3探究规律:如图1-1,已知直线,mnAB、为直线n上两点,CP、为直线m上两点.(1)请写出图1-1中,面积相等的各对三角形:_______________________;(2)如果ABC、、为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_________与△ABC的面积相等.理由是:____________________________.解决问题:如图1-2,五边形ABCDE是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图3所示的形状,但承包土地与开垦荒地的分界小路(即图3中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(1)写出设计方案,并在图3中画出相应的图形;(2)说明方案设计理由.练习1.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M、N分别是AB、BC边上的中点,则MP+NP的最小值是()A.2;B.1;C.2;D.122.现有一宽为40厘米的矩形铁皮,用它可以冲出3个扇形,加工成3个底面半径为10厘米,母线长为20厘米的无底面圆锥(不计接缝损失)(1)计算此圆锥侧面展开图(扇形)的圆心角的度数;(2)按照题目要求在下图中画出使铁皮能充分利用(最省料)的示意图,并求出矩形铁皮的长至少为多少厘米.4AECCBDN3.有一块形状如图的耕地,兄弟四人要把它分成四等份,请你想设计一种方案把它分成所需要的份数,写出作法,不需证明.(三)例1某市经济开发区建有BC、、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且900ABCD米,1700ADBC米.自来水公司已经修好一条自来水主管道,ANBC两厂之间的公路与自来水管道交于E处,500EC米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图形中画出;(2)求出各厂所修建的自来水管道的最低的造价各是多少元?例2已知△ABC,∠ABC=∠ACB=63.如图1所示,取三边中点,可以把△ABC分割成四个等腰三角形.请你在图2中,设计另外四种不同的方法把△ABC分割成四个等腰三角形,并标明分割后的四个等腰三角形的底角..的度数(如果经过变换后两个图形重合,则视为同一种方法).(图1)(图2)例3探究规律:如图1,已知直线m//n,A、B为直线n上两点,C、P为直线m上两点.图1(1)请写出图1中,面积相等的各对三角形:_______________________;(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有_________与△ABC的面积相等.ABCDEABCABCABCABCCBA5理由是:____________.例4经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得68ACB.(1)求所测之处江的宽度(.48.268tan,37.068cos,93.068sin);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形..【题有约】1.一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1∶0.75改为1∶3;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.⑴求整修后背水坡面的面积;⑵如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?2.某生活小区的居民筹集资金1600元,计划在一块上、下两底分别为10m、20m的梯形空地上种植花木(如图).(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/米2.当△AMD地带种满花后,(图中阴影部分)共花了160元.请计算种满△BMC地带所需的费用.(2)若其余地带要种的有玫瑰和茉莉两种花木可供选择,单价分别为12元/米2和10元/米2,应选择种哪种花木,刚好用完所筹集的资金?ACB图①图②6403.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M、N分别是AB、BC边上的中点,则MP+NP的最小值是()A.2B.1C.D.4.如图,OA、OB是两条相交的公路,点P是一个邮电所,现想在OA、OB上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在何处?5.已知一块直径为2米的半圆形铁皮,现要在充分利用这块铁皮的前提下,加工出一个圆锥的底面与一个圆柱的两个底面,请你选择下列其中一种加工方案,并求出此方案中各底面的半径长,再判断四个圆心构成的四边形是什么四边形.(1)(2)(1)方案一:如图(1),当圆锥的底面最大时;(2)方案二:如图(2),当圆柱的底面最大时.6.现有一宽为40厘米的矩形铁皮,用它可以冲出3个扇形,加工成3个底面半径为10厘米,母线长为20厘米的无底面圆锥(不计接缝损失)(1)计算此圆锥侧面展开图(扇形)的圆心角的度数;(2)按照题目要求在下图中画出使铁皮能充分利用(最省料)的示意图,并求出矩形铁皮的长至少为多少厘米.7.现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3).分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.图1矩形(非正方形)图2正方形图3有一个角是135°的三角形(第7图)78.以下两图是一个等腰Rt△ABC和一个等边△DEF,要求把它们分别割成三个三角形,使分得的三个三角形互相没有重叠部分,并且△ABC中分得的三个三角形和△DEF中分得的三个小三角形分别相似,请画出两个三角形中的分割线,标出分割得到的小三角形中两个角的度数.10.已知:E、F为四边形ABCD的边AB的三等分点,G、H为边DC的三等分点,求证:SSEFGHABCD1311、我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.13、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助
本文标题:方案设计(学生版)
链接地址:https://www.777doc.com/doc-3466486 .html