您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 5.6正余弦定理的综合应用
§5.6正弦定理、余弦定理的综合应用基础知识自主学习要点梳理1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示.已知条件应用定理一般解法一边和两角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b与c.在有解时只有一解.两边和夹角(如a,b,C)余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,求出角C.在有解时只有一解两边和其中一边的对角(如a,b,A)正弦定理余弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c.可有两解,一解或无解2.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.3.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.基础自测1.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析如图,OM=AOtan45°=30,ON=AOtan30°=33×30=103,由余弦定理得,MN=900+300-2×30×103×32=300=103(m).1032.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC=________.解析由已知∠BAD=60°,∠CAD=70°,∴∠BAC=60°+70°=130°.130°3.在200m高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°、60°,则塔高为________m.解析如图所示,设塔高为hm.由题意及图可知:(200-h)·tan60°=200tan60°.解得:h=4003(m).40034.如图所示,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,不能确定A、B间距离的是()A.α,a,bB.α,β,aC.a,b,γD.α,β,b解析选项B中由正弦定理可求b,再由余弦定理可确定AB.选项C中可由余弦定理确定AB.选项D同B类似,故选A.A5.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的()A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°解析灯塔A、B的相对位置如图所示,由已知得∠ACB=80°,∠CAB=∠CBA=50°,则α=60°-50°=10°,即北偏西10°.B题型分类深度剖析题型一测量距离问题例1如图所示,为了测量河对岸A,B两点间的距离,在这一岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.思维启迪在△BCD中,求出BC,在△ABC中,求出AB.解在△ACD中,已知CD=a,∠ACD=60°,∠ADC=60°,所以AC=a.①在△BCD中,由正弦定理可得BC=asin105°sin45°=3+12a.②在△ABC中,已经求得AC和BC,又因为∠ACB=30°,所以利用余弦定理可以求得A、B两点之间的距离为AB=AC2+BC2-2AC·BC·cos30°=22a.探究提高这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰当.变式训练1如图,为了计算渭河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点.现测得AD⊥CD,AD=100m,AB=140m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A,B,C,D在同一平面内,测量结果保留整数;参考数据:2=1.414,3=1.732,5=2.236).解在△ABD中,设BD=xm,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即1402=x2+1002-2×100×x×cos60°,整理得x2-100x-9600=0,解得x1=160,x2=-60(舍去),故BD=160m.在△BCD中,由正弦定理得:BCsin∠CDB=BDsin∠BCD,又AD⊥CD,∴∠CDB=30°,∴BC=160sin135°·sin30°=802≈113(m).即两景点B与C之间的距离约为113m.题型二测量高度问题例2某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.思维启迪依题意画图,某人在C处,AB为塔高,他沿CD前进,CD=40米,此时∠DBF=45°,从C到D沿途测塔的仰角,只有B到测试点的距离最短时,仰角才最大,这是因为tan∠AEB=ABBE,AB为定值,BE最小时,仰角最大.要求出塔高AB,必须先求BE,而要求BE,需先求BD(或BC).解如图所示,某人在C处,AB为塔高,他沿CD前进,CD=40,此时∠DBF=45°,过点B作BE⊥CD于E,则∠AEB=30°,在△BCD中,CD=40,∠BCD=30°,∠DBC=135°,由正弦定理,得CDsin∠DBC=BDsin∠BCD,∴BD=40sin30°sin135°=202.∠BDE=180°-135°-30°=15°.在Rt△BED中,BE=DBsin15°=202×6-24=10(3-1).在Rt△ABE中,∠AEB=30°,∴AB=BEtan30°=103(3-3)(米).故所求的塔高为103(3-3)米.探究提高在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,恰当地选取相关的三角形和正、余弦定理逐步进行求解.注意综合应用方程和平面几何、立体几何等知识.变式训练2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CDsin∠BDCsin∠CBD=s·sinβsinα+β在Rt△ABC中,AB=BCtan∠ACB=stanθsinβsinα+β.题型三正、余弦定理在平面几何中的综合应用例3如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.思维启迪由于AB=5,∠ADB=45°,因此要求BD,可在△ABD中,由正弦定理求解,关键是确定∠BAD的正弦值.在△ABC中,AB=5,AC=9,∠ACB=30°,因此可用正弦定理求出sin∠ABC,再依据∠ABC与∠BAD互补确定sin∠BAD即可.解在△ABC中,AB=5,AC=9,∠BCA=30°.由正弦定理,得ABsin∠BCA=ACsin∠ABC,sin∠ABC=AC·sin∠BCAAB=9sin30°5=910.∵AD∥BC,∴∠BAD=180°-∠ABC,于是sin∠BAD=sin∠ABC=910.同理,在△ABD中,AB=5,sin∠BAD=910,∠ADB=45°,由正弦定理:ABsin∠BDA=BDsin∠BAD,解得BD=922.故BD的长为922.探究提高要利用正、余弦定理解决问题,需将多边形分割成若干个三角形.在分割时,要注意有利于应用正、余弦定理.变式训练3如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC=AD2+DC2-AC22AD·DC=100+36-1962×10×6=-12,∴∠ADC=120°,∴∠ADB=60°.在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得ABsin∠ADB=ADsinB,∴AB=AD·sin∠ADBsinB=10sin60°sin45°=10×3222=56.答题模板6.运用正弦、余弦定理解决实际应用问题试题:(12分)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°、30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01km,2≈1.414,6≈2.449).审题视角(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.规范解答解在△ACD中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=0.1.又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA.[4分]在△ABC中,ABsin∠BCA=ACsin∠ABC,[6分]所以AB=ACsin60°sin15°=32+620,同理,BD=32+620≈0.33(km).[10分]故B、D的距离约为0.33km.[12分]答题模板解斜三角形应用题的一般步骤为:第一步:分析:理解题意,分清已知与未知,画出示意图;第二步:建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;第三步:求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;第四步:检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.批阅笔记(1)由实际出发,构建数学模型是解应用题的基本思路.如果涉及三角形问题,我们可以把它抽象为解三角形问题,进行解答,之后再还原成实际问题,即利用上述模板答题.(2)本题的易错点是,不能将已知和待求量转化到同一个三角形中,无法运用正、余弦定理求解.思想方法感悟提高方法与技巧1.合理应用仰角、俯角、方位角、方向角等概念建立三角函数模型.2.把生活中的问题化为二维空间解决,即在一个平面上利用三角函数求值.3.合理运用换元法、代入法解决实际问题.失误与防范在解实际问题时,应正确理解如下角的含义.1.方向角——从指定方向线到目标方向线的水平角.2.方位角——从正北方向线顺时针到目标方向线的水平角.3.坡度——坡面与水平面的二面角的度数.4.仰角与俯角——与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时称为仰角,目标视线在水平视线下方时称为俯角.返回
本文标题:5.6正余弦定理的综合应用
链接地址:https://www.777doc.com/doc-3471011 .html