您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 大学离散数学期末重点知识点总结(考试专用)
1.常用公式p∧(P→Q)=Q假言推论┐Q∧(P→Q)=┐P拒取式┐p∧(P∨Q)=Q析取三段式(P→Q)∧(Q→R)=P→R条件三段式(PQ)∧(QR)=PR双条件三段式(P→Q)∧(R→S)∧(P∧R)=Q→S合取构造二难(P→Q)∧(R→S)∧(P∨R)=Q∨S析取构造二难(x)((Ax)∨(Bx))=(x)(Ax)∨(x)(Bx)(x)((Ax)∧(Bx))=(x)(Ax)∧(x)(Bx)—┐(x)(Ax)=(x)┐(Ax)—┐(x)(Ax)=(x)┐(Ax)(x)(A∨(Bx))=A∨(x)(Bx)(x)(A∧(Bx))=A∧(x)(Bx)(x)((Ax)→(Bx))=(x)(Ax)→(x)(Bx)(x)(Ax)→B=(x)((Ax)→B)(x)(Ax)→B=(x)((Ax)→B)A→(x)(Bx)=(x)(A→(Bx))A→(x)(Bx)=(x)(A→(Bx))(x)(Ax)∨(x)(Bx)=(x)((Ax)∨(Bx))(x)((Ax)∧(Bx))=(x)(Ax)∧(x)(Bx)(x)(Ax)→(x)(Bx)=(x)((Ax)→(Bx))2.命题逻辑1.→,前键为真,后键为假才为假;—,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;3.谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;4.集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;5.关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为mn,A到B上可以定义mn2种不同的关系;2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUIx;对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2RU3RU……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={x,y|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);6.函数1.若|X|=m,|Y|=n,则从X到Y有mn2种不同的关系,有mn种不同的函数;2.在一个有n个元素的集合上,可以有2n2种不同的关系,有nn种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m=n,则从X到Y有Amn种不同的单射;4.单射:f:X-Y,对任意1x,2x属于X,且1x≠2x,若f(1x)≠f(2x);满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));5.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;7.代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2.集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3.判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:A,*,B,^,满足f(a*b)=f(a)^f(b),则f为由A,*到B,^的同态映射;若f是双射,则称为同构;8.群广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;10.格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1)自反性a≤a对偶:a≥a2)反对称性a≤b^b≥a=a=b对偶:a≥b^b≤a=a=b3)传递性a≤b^b≤c=a≤c对偶:a≥b^b≥c=a≥c4)最大下界描述之一a^b≤a对偶avb≥aA^b≤b对偶avb≥b5)最大下界描述之二c≤a,c≤b=c≤a^b对偶c≥a,c≥b=c≥avb6)结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7)等幂律a^a=a对偶ava=a8)吸收律a^(avb)=a对偶av(a^b)=a9)a≤b=a^b=aavb=b10)a≤c,b≤d=a^b≤c^davb≤cvd11)保序性b≤c=a^b≤a^cavb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c=av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格A,=的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格A,=的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;布尔代数:一个有补分配格称为布尔代数;11.图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点iv,jv,若存在连接iv到jv的路,则称iv与jv相互可达,也称iv与jv是连通的;在有向图中,若存在iv到jv的路,则称iv到jv可达;13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),mij是vi与ej关联的次数,节点为行,边为列;无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),aij是vi邻接到vj的边的数目,点为行,点为列;17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),iv到jv有路为1,无路则为0,点为行,点为列;19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点0v;②选择一个与0v邻接且未被访问过的节点1v;③从1v出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点0v;②访问与0v邻接的所有节点v1,v2,……,vk,这些作为第一层节点;③在第一层节点中选定一个节点v1为起点;④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边
本文标题:大学离散数学期末重点知识点总结(考试专用)
链接地址:https://www.777doc.com/doc-3501984 .html