您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 双因素完全随机设计的方差分析
两因素完全随机试验设计的方差分析2008-10-21.iT.ixjT...Tjx...x海拔高度/m植被类型原生林次生乔木林次生灌木林500~100069382613344.331000~1500104794222575.001500~2000216165115496165.332000~2500128542821070.005173362111064()129.2584.0052.7588.67()表3-2-24林麝种群数量统计表22AbK22Aa22Ab22BaK22Ba22BaK222变异因素dfSSMSEMS固定模型随机模型A随机B固定Aa-1SSAMSABb-1SSBMSB误差(e)(a-1)(b-1)SSeMSe总变异ab-1SST表3-2-27双因素无重复试验方差分析模式表3-2-28麝种群分布方差分析表F变异来源dfSSMSF5%1%海拔(A)325135.348378.4531.81**4.799.78植被间(B)211835.175917.5922.47**5.1410.92误差(e)61580.16263.36总变异1138550.67表3-2-30海拔高度、植被类型的差异显著性(SSR法)因素平均数显著性5%1%AA3165.33aAA275.00bBA470.00bBA144.33bBBB1129.25aAB284.00bBB352.75cBp234SSR0.053.463.583.64ALSR0.0532.4233.5434.11BLSR0.0528.0629.0329.52SSR0.015.245.515.65ALSR0.0149.1051.6352.94BLSR0.0142.5044.6945.8237.9336.263bMSSeEA11.8436.263aMSSeEB..iT..ix..jT...T..jx...xABB1对照B2(N)B3(N+K)B4(N+P)xi1kxi2kxi3kxi4kA1(砂土)31353045434776717560646263953.259632135452227418662A2(砂土)50525461636588909274757083469.5015652189632709021973A3(粘土)40454455525686848470716975663.001294316354.3325486.67210703814877466152229()42.3354.1182.8968.3361.92()表3-2-25不同土质、施肥条件下苗床高资料表(单位:cm)22AbrK22BarK22BArK2222ABAbrr222BBAarr22BAr2222ABAbrKr22Bar22BAr2变异来源自由度df平方和SS均方MSEMS固定模型随机模型A固定B随机ABA×B误差(e)a-1b-1(a-1)(b-1)ab(r-1)SSASSBSSA×BSSeMSAMSBMSA×BMSe总变异abr-1SST表3-2-26两因素等重复试验的方差分析模式表3-2-31不同土质、施肥条件下的苗高方差分析(固定模型)F变异来源DFSSMSF土壤间(A)21605.50802.75176.04**F0.01(2,24)=5.61施肥间(B)38328.972776.32608.84**F0.01(3,24)=4.72交互作用(A×B)674.9512.492.74*F0.05(6,24)=2.51误差(e)24109.334.56F0.01(6,24)=3.67总变异3510118.75因素与处理平均数显著性5%1%A壤土(A2)69.50aA粘土(A3)63.00bB砂土(A1)53.25cCBN+K(B3)82.89aAN+P(B4)68.33bBN(B2)54.11cCCK(B1)42.33dDAB(处理)A2B390.00aAA3B384.67bBA1B374.00cCA2B473.00cdCA3B470.00dCA2B263.00eDA1B462.00eDA3B254.33fEA2B152.00fEA1B245.00gFA3B143.00gFA1B132.00hGp23456789101112SSR0.052.923.073.153.223.283.313.343.373.383.403.41ALSR0.051.801.891.941.982.022.042.062.082.082.092.10BLSR0.052.082.192.242.292.332.362.382.402.412.422.43ABLSR0.053.603.793.883.974.044.084.124.154.174.194.20SSR0.013.964.144.244.334.394.444.494.534.574.604.62ALSR0.012.442.552.612.702.712.742.772.792.822.842.85BLSR0.012.822.953.023.083.123.163.203.223.253.273.29ABLSR0.014.885.105.235.345.415.475.545.595.635.675.70表3-2-32例1中A、B和AB的SSRα与LSRα6164.01256.4brMSSeEA7118.0956.4arMSSeEB2329.1356.4rMSSeEAB单因素随机区组设计的方差分析MadebyLidexiao10-22-2008回顾:随机区组设计区组的概念不局限于田间试验,可以认为只要将性质近似的试验材料(如同一窝动物,同年龄,同身长,同体重的个体等)或大致相同的环境条件安排在同一组群中,该组群则可称为区组.随机区组设计也称为随机单位组设计,它是以划分区组的方法使区组内部条件尽可能一致,以达到局部控制的目的.在进行随机区组设计时,关键是掌握区组内的环境变异要尽可能小,而区组间允许存在一定的环境变异.将环境均匀性的控制范围从整个试验缩小的一个个区组,区组间的差异可以通过方差分析使其与误差分离.因而,随机区组设计既能保持完全随机设计的优点,又能克服完全随机设计的缺点减少试验误差.随机区组设计要点在田间的区组设置中,应考虑到试验精确度与工作便利等方面,并以前者为主.为此,必须使区组间有最大的土壤差异,区组内的各个小区间变异最小.一般来讲,方形区组的差异大,狭长形小区变异小,常用的是狭长形小区.当土壤肥力有方向性递减时,区组设置应与此方向垂直,区组内小区长边应与此方向平行;当区组内小区多时,可分为两排,当然还必须有四周的保护行,观察道路等.ⅠⅡⅢⅣ74211317368548732164524887566532肥力梯度ⅠⅡⅢ38110715149613416112125(b)16个品种3个重复的随机区组(小区布置成两排)a)8个品种4个重复的随机区组排列单因素随机区组的方差分析实质是两因素无重复(只有单个观察值)的方差分析方法..ˆ,..ˆ..,ˆˆ,ˆ,..ˆ........xxxxxxxxxxxjiijijjjiijjiiijjiijx表3-3-3小麦品比试验的产量结果(单位:kg).iT.ix2·iTjijx2jT.2.iTijijx2jx...x2.jT2.jT区组BB1B2B3品种AA110.911.312.234.411.51183.36395.29A210.812.314.037.112.41376.41463.93A311.112.510.534.111.41162.81389.71A49.110.711.130.910.3954.81320.51A511.813.914.840.513.51640.25551.49A610.110.611.832.510.81056.25393.61A710.011.514.135.611.91267.36431.04A89.310.412.432.110.71030.41348.4183.193.2100.9277.2T..9671.663253.9910.411.712.611.66905.618686.2410180.8125772.6622AbK22Aa22Ab22BaK22Ba22BaK222变异因素dfSSMSEMS固定模型随机模型A随机B固定Aa-1SSAMSABb-1SSBMSB误差(e)(a-1)(b-1)SSeMSe总变异ab-1SST表3-2-27双因素无重复试验方差分析模式**将B因素视为区组,区组数为r,代换相应的b.即成为单因素随机区组的方差分析表表3-3-9例3-3-2的方差分析51.6)14,2(01.0F28.4)14,7(01.0F变异来源dfSSMSFFα区组间(B)219.929.9613.644**品种间(A)722.233.164.356**误差(e)1410.250.73总变异2352.4.ix.6.()ixxCK品种A5A2A7A1A3A6A8A413.5012.3711.8711.4711.3710.8310.7010.302.67**1.54*1.040.640.540-0.13-0.53表3-3-10参试品种与对照品种产量的差异显著性6962.0373.022..rMSSekxix49.1145.26962.0)14(6962.005.005.0tLSD07.2977.2696.0)14(6962.001.001.0tLSD
本文标题:双因素完全随机设计的方差分析
链接地址:https://www.777doc.com/doc-3507238 .html