您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > of F (x) = 0, there exists a ball
ConvergenceofNewton’sMethodforSingularSmoothandNonsmoothEquationsUsingAdaptiveOuterInverses1XiaojunChenSchoolofMathematics,UniversityofNewSouthWalesSydney2052,AustraliaZuhairNashedDepartmentofMathematicalSciences,UniversityofDelawareNewark,DE19716,USALiqunQiSchoolofMathematics,UniversityofNewSouthWalesSydney2052,Australia(January1993,RevisedJune1995)ABSTRACT.WepresentalocalconvergenceanalysisofgeneralizedNewtonmeth-odsforsingularsmoothandnonsmoothoperatorequationsusingadaptiveconstructsofouterinverses.Weprovethatforasolutionx ofF(x)=0,thereexistsaballS=S(x ;r),r0suchthatforanystartingpointx02Sthemethodconvergestoasolution x 2Sof F(x)=0,where isaboundedlinearoperatorthatdependsontheFr echetderivativeofFatx0oronageneralizedJacobianofFatx0.Point x maybedi erentfromx whenx isnotanisolatedsolution.Moreover,weprovethattheconvergenceisquadraticiftheoperatorissmooth,andsuperlineariftheoperatorislocallyLipschitz.Theseresultsaresharpinthesensethattheyreduceinthecaseofaninvertiblederivativeorgeneralizedderivativetoearliertheoremswithnoadditionalassumptions.Theresultsareillustratedbyasystemofsmoothequationsandasystemofnonsmoothequations,eachofwhichisequivalenttoanonlinearcomplementarityproblem.Keywords:Newton’smethod,convergencetheory,nonsmoothanalysis,outerin-verses,nonlinearcomplementarityproblems.AMS(MOS)subjectclassi cation.65J15,65H10,65K10,49M15.Abbreviatedtitle:Newton’smethodforsingularequations1ThisworkissupportedbytheAustralianResearchCouncilandbytheNationalScienceFoun-dationGrantDMS-901526.11.IntroductionLetXandYbeBanachspacesandletL(X;Y)denotethesetofallboundedlinearoperatorsonXintoY.LetF:X!Ybeacontinuousfunction.WeconsiderthenonlinearoperatorequationF(x)=0;x2X:(1:1)WhenX=Y,itiswell-knownthatifFisFr echetdi erentiableandF0islocallyLipschitzandinvertibleatasolutionx ,thenthereexistsaballS(x ;r);r0suchthatforanyx02S(x ;r),theNewtonmethodxk+1=xk F0(xk) 1F(xk)(1:2)isquadraticallyconvergenttox .See,e.g.,[9,27,34].Inthenonsmoothcase,F0(xk)maynotexist.ThegeneralizedNewtonmethodproposestousegeneralizedJacobiansofFtoplaytheroleofF0intheNewtonmethod(1.2)inthe nitedimensionalcase.LetFbealocallyLipschitzianmappingfromRnintoRm.ThenRademacher’stheoremimpliesthatFisalmosteverywheredi erentiable.LetDFbethesetwhereFisdi erentiable.Denote@BF(x)=flimxi!xxi2DFrF(xi)g:ThegeneralizedJacobianofFatx2RninthesenseofClarke[8]isequaltotheconvexhullof@BF(x),@F(x)=conv@BF(x);whichisanonemptyconvexcompactset.TheNewtonmethodfornonsingularnonsmoothequationsusingthegeneralizedJacobianisde nedbyxk+1=xk V 1kF(xk);Vk2@F(xk):(1:3)Alocalsuperlinearconvergencetheoremisgivenin[33],whereitisassumedthatallV2@F(x )arenonsingular.Qi[31]suggestedamodi edversionofmethod(1.3)intheformxk+1=xk V 1kF(xk);Vk2@BF(xk)(1:4)andgavealocalsuperlinearconvergencetheoremformethod(1.4).Histheoremreducedthenonsingularityrequirementonallmembersof@F(x )toallmembersof@BF(x ).Anothermodi cationisaniterationfunctionmethodintroducedbyHan,PangandRangaraj[13]usinganiterationfunctionG( ; ):Rn Rn!Rn.IfFhasaone-sideddirectionalderivativeF0(x;d):=limt#0F(x+td) F(x)t(1:5)2andG(x;d)=F0(x;d),avariantoftheiterationfunctionmethodcanbede nedby(solveF(xk)+F0(xk;d)=0;setxk+1=xk+d:(1:6)SeealsoPang[28]andQi[31].Methods(1.2),(1.3),(1.4)and(1.6)areveryuseful,buttheyarenotapplicabletothesingularcase.Ateachstepin(1.2),(1.3)and(1.4),theinverseofaJacobianorageneralizedJacobianisrequired;in(1.6)anonlinearequationissolvedateachstep(inthesingularcase,itmayhavenosolutions).Oftentheinversecannotbeguaranteedtoexist;singularityoccursinmanyapplications.Forexample,weconsiderthenonlinearcomplementarityproblem(NCP):Foragivenf:Rn!Rn, ndx2Rnsuchthatx 0;f(x) 0andxTf(x)=0:Mangasarian[19]formulatedtheNCPinthecasewhenfisFr echetdi erentiableasanequivalentsystemofsmoothequations:^Fi(x)=(fi(x) xi)2 fi(x)jfi(x)j xijxij=0;i=1;2;:::;n;(1:7)wheref=(f1;:::;fn)T:Letsgn( )=(1; 0; 1; 0;andlet ijdenotetheKroneckerfunction.ItiseasytoshowthattheJacobianof^F:=(^F1;:::;^Fn)Tatxisgivenby:@^Fi(x)@xj=2fi(x)@fi(x)@xj(1 sgn(fi(x)))+2xi ij(1 sgn(xi)) 2fi(x) ij 2xi@fi(x)@xji;j=1;2;:::;n:TheJacobianr^F(x)issingularwhenthereissomedegeneracy,i.e.xi=fi(x)=0forsomei.TheNCPcanalsobeformulatedasasystemofnonsmoothequations[28]:~F(x)=min(f(x);x)=0;(1:8)wherethe\minoperatordenotesthecomponentwiseminimumoftwovectors.Itishardtoguaranteethatallmembersof@BF(x)arenonsingularwhenthereissomenonsmoothness,i.e.xi=fi(x)andei6=rfi(x)forsomei,whereeiisthei-throwoftheidentitymatrixI2Rn n.3In[5],ChenandQistudiedaparameterizedNewtonmethod:xk+1=xk (Vk+ kI) 1F(xk);Vx2@BF(xk);where kisaparametertoensuretheexistenceoftheinverseofVk+ kI:Thelocalsuperlinearconvergencetheoremin[5]requiresallV 2@BF(x )tobenonsingular.InNewton-likemethodsforsolvingsmoothandnonsmoothequations,e.g.quasi-Newtonmethodsandsplittingmethods,theJacobianisoftenrequiredtobenonsin-gularatasolutionx towhichthemethodissupposedtoconverge[4,5,6,9,15,16,27,28,32,40].HenceitisinterestingtoknowwhathappenswiththeNewtonmethodswhenF0(x )orsomeV 2@BF(x )aresingularatx .Inthiscasethesolutionsetislocallya
本文标题:of F (x) = 0, there exists a ball
链接地址:https://www.777doc.com/doc-3509372 .html