您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 简化解析几何运算技巧专题
专题:简化解析几何运算的5个技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.技法一巧用定义,揭示本质定义是导出其性质的“发源地”,解题时,应善于运用圆锥曲线的定义,以数形结合思想为指导,把定量的分析有机结合起来,则可使解题计算量大为简化,使解题构筑在较高的水平上.[典例]如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是()A.2B.3C.32D.62[解析]由已知,得F1(-3,0),F2(3,0),设双曲线C2的实半轴长为a,由椭圆及双曲线的定义和已知,可得|AF1|+|AF2|=4,|AF2|-|AF1|=2a,|AF1|2+|AF2|2=12,解得a2=2,故a=2.所以双曲线C2的离心率e=32=62.[答案]D[方法点拨]本题可巧妙运用椭圆和双曲线的定义建立|AF1|,|AF2|的等量关系,从而快速求出双曲线实半轴长a的值,进而求出双曲线的离心率,大大降低了运算量.[对点演练]抛物线y2=4mx(m>0)的焦点为F,点P为该抛物线上的动点,若点A(-m,0),则|PF||PA|的最小值为________.解析:设点P的坐标为(xP,yP),由抛物线的定义,知|PF|=xP+m,又|PA|2=(xP+m)2+y2P=(xP+m)2+4mxP,则|PF||PA|2=xP+m2xP+m2+4mxP=11+4mxPxP+m2≥11+4mxP2xP·m2=12(当且仅当xP=m时取等号),所以|PF||PA|≥22,所以|PF||PA|的最小值为22.答案:22技法二设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用代点法求解.[典例]已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的标准方程为()A.x245+y236=1B.x236+y227=1C.x227+y218=1D.x218+y29=1[解析]设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=-2,x21a2+y21b2=1,x22a2+y22b2=1,①②①-②得x1+x2x1-x2a2+y1+y2y1-y2b2=0,所以kAB=y1-y2x1-x2=-b2x1+x2a2y1+y2=b2a2.又kAB=0+13-1=12,所以b2a2=12.又9=c2=a2-b2,解得b2=9,a2=18,所以椭圆E的方程为x218+y29=1.[答案]D[方法点拨]本题设出A,B两点的坐标,却不需求出A,B两点的坐标,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题.[对点演练]过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.解析:设A(x1,y1),B(x2,y2),则x21a2+y21b2=1,x22a2+y22b2=1,∴x1-x2x1+x2a2+y1-y2y1+y2b2=0,∴y1-y2x1-x2=-b2a2·x1+x2y1+y2.∵y1-y2x1-x2=-12,x1+x2=2,y1+y2=2,∴-b2a2=-12,∴a2=2b2.又∵b2=a2-c2,∴a2=2(a2-c2),∴a2=2c2,∴ca=22.即椭圆C的离心率e=22.答案:22技法三巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例](2016·全国甲卷)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.[解]设M(x1,y1),则由题意知y10.(1)当t=4时,E的方程为x24+y23=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为π4.因此直线AM的方程为y=x+2.将x=y-2代入x24+y23=1,得7y2-12y=0.解得y=0或y=127,所以y1=127.因此△AMN的面积S△AMN=2×12×127×127=14449.(2)由题意知t3,k0,A(-t,0).将直线AM的方程y=k(x+t)代入x2t+y23=1,得(3+tk2)x2+2t·tk2x+t2k2-3t=0.由x1·(-t)=t2k2-3t3+tk2,得x1=t3-tk23+tk2,故|AM|=|x1+t|1+k2=6t1+k23+tk2.由题设,直线AN的方程为y=-1k(x+t),故同理可得|AN|=6kt1+k23k2+t.由2|AM|=|AN|,得23+tk2=k3k2+t,即(k3-2)t=3k(2k-1).当k=32时上式不成立,因此t=3k2k-1k3-2.t3等价于k3-2k2+k-2k3-2=k-2k2+1k3-20,即k-2k3-20.因此得k-20,k3-20或k-20,k3-20,解得32k2.故k的取值范围是(32,2).[方法点拨]本例在第(2)问中可应用根与系数的关系求出x1=t3-tk23+tk2,这体现了整体思路.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点演练](2016·兰州实战考试)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点P1,32,左、右焦点分别为F1,F2.(1)求椭圆C的方程;(2)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的内切圆半径为327,求以F2为圆心且与直线l相切的圆的方程.解:(1)由ca=12,得a=2c,所以a2=4c2,b2=3c2,将点P1,32的坐标代入椭圆方程得c2=1,故所求椭圆方程为x24+y23=1.(2)由(1)可知F1(-1,0),设直线l的方程为x=ty-1,代入椭圆方程,整理得(4+3t2)y2-6ty-9=0,显然判别式大于0恒成立,设A(x1,y1),B(x2,y2),△AF2B的内切圆半径为r0,则有y1+y2=6t4+3t2,y1y2=-94+3t2,r0=327,所以S△AF2B=S△AF1F2+S△BF1F2=12|F1F2|·|y1-y2|=12|F1F2|·y1+y22-4y1y2=12t2+14+3t2.而S△AF2B=12|AB|r0+12|BF2|r0+12|AF2|r0=12r0(|AB|+|BF2|+|AF2|)=12r0(|AF1|+|BF1|+|BF2|+|AF2|)=12r0·4a=12×8×327=1227,所以12t2+14+3t2=1227,解得t2=1,因为所求圆与直线l相切,所以半径r=2t2+1=2,所以所求圆的方程为(x-1)2+y2=2.技法四借“曲线系”,理清规律利用曲线系解题,往往简捷明快,事半功倍,所以灵活运用曲线是解析几何中重要的解题方法和技巧之一.[典例]已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程是y=3x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.x236-y2108=1B.x29-y227=1C.x2108-y236=1D.x227-y29=1[解析]由双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程是y=3x,可设双曲线的方程为x2-y23=λ(λ>0).因为双曲线x2a2-y2b2=1(a>0,b>0)的一个焦点在抛物线y2=24x的准线上,所以F(-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x29-y227=1.[答案]B[方法点拨]本题利用共渐近线系双曲线方程,可使问题马上得到解决.避免了复杂的判断、可能的分类讨论、繁杂的解方程组,事半功倍.[对点演练]圆心在直线x-y-4=0上,且经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点的圆的方程为()A.x2+y2-x+7y-32=0B.x2+y2-x+7y-16=0C.x2+y2-4x+4y+9=0D.x2+y2-4x+4y-8=0解析:选A设经过两圆的交点的圆的方程为x2+y2+6x-4+λ(x2+y2+6y-28)=0,即x2+y2+61+λx+6λ1+λy-4+28λ1+λ=0,其圆心坐标为-31+λ,-3λ1+λ,又圆心在直线x-y-4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x2+y2-x+7y-32=0.技法五巧引参数,方便运算换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例]设椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.若|AP|=|OA|,证明直线OP的斜率k满足|k|>3.[解]法一:依题意,直线OP的方程为y=kx,设点P的坐标为(x0,y0).由条件,得y0=kx0,x20a2+y20b2=1.消去y0并整理,得x20=a2b2k2a2+b2.①由|AP|=|OA|,A(-a,0)及y0=kx0,得(x0+a)2+k2x20=a2,整理得(1+k2)x20+2ax0=0.而x0≠0,于是x0=-2a1+k2,代入①,整理得(1+k2)2=4k2ab2+4.又a>b>0,故(1+k2)2>4k2+4,即k2+1>4,因此k2>3,所以|k|>3.法二:依题意,直线OP的方程为y=kx,可设点P的坐标为(x0,kx0).由点P在椭圆上,得x20a2+k2x20b2=1.因为a>b>0,kx0≠0,所以x20a2+k2x20a2<1,即(1+k2)x20<a2.②由|AP|=|OA|及A(-a,0),得(x0+a)2+k2x20=a2,整理得(1+k2)x20+2ax0=0,于是x0=-2a1+k2,代入②,得(1+k2)·4a21+k22<a2,解得k2>3,所以|k|>3.法三:设P(acosθ,bsinθ)(0≤θ<2π),则线段OP的中点Q的坐标为a2cosθ,b2sinθ.|AP|=|OA|⇔AQ⊥OP⇔kAQ×k=-1.又A(-a,0),所以kAQ=bsinθ2a+acosθ,即bsinθ-akAQcosθ=2akAQ.从而可得|2akAQ|≤b2+a2k2AQ<a1+k2AQ,解得|kAQ|<33.故|k|=1|kAQ|>3.[方法点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量.[对点演练](2016·长春市质量检测)椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,且离心率为12,点P为椭圆上一动点,△F1P
本文标题:简化解析几何运算技巧专题
链接地址:https://www.777doc.com/doc-3511856 .html