您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 解三角形应用举例资料
解三角形应用举例能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1个重要区别——仰角、俯角和方位角的区别仰角、俯角和方位角是不同的,仰角和俯角是对于水平线而言的,方位角是相对于正北方向而言的.2种必知情形——解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.2个必须防范——解三角形应注意的问题(1)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.(2)在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.抓住2个必备考点考点1实际问题中的有关概念及常用术语1.基线在测量上,根据测量需要适当确定的叫做基线.线段2.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).3.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).4.方向角相对于某一正方向的水平角(如图③)(1)北偏东α:指北方向顺时针旋转α到达目标方向.(2)东北方向:指北偏东45°或东偏北45°.(3)其他方向角类似.5.坡角与坡比坡面与水平面所成的锐二面角叫做坡角,坡面的垂直高度h与水平宽度b之比即i=hb=tanα(其中α为坡角)叫做坡比(如图).6.视角观测点与观测目标两端点的连线所成的夹角叫做视角(如图).[判一判]判断下列说法是否正确(请在括号内填“√”或“×”).(1)海上有A,B,C三个小岛,测得A,B两岛相距10nmile,∠BAC=60°,∠ABC=75°,则B,C间的距离是56nmile.(√)(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.(×)(3)若点A在点C的北偏东30°方向,点B在点C的南偏东60°方向,且AC=BC,则点A在点B北偏西15°方向.(√)(4)有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为2cos10°.(√)考点2解三角形应用题的一般步骤(1)读懂题意,理解问题的实际背景,明确已知和所求,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形模型.(3)选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.[填一填](1)一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为(海里/小时).(2)轮船A和轮船B在中午12时离开海港C,两艘轮船航行方向的夹角为120°,轮船A的航行速度是25海里/小时,轮船B的航行速度是15海里/小时,下午2时两船之间的距离是海里.172670突破3个热点考向考向一测量距离问题例1隔河可以看见对岸两目标A、B,但不能到达,在岸边选择相距3km的C、D两点,并测得∠DCB=45°,∠BDC=75°,∠ADC=30°,∠ACD=120°(A、B、C、D在同一平面内),求两目标A、B之间的距离.[解]在△BCD中,因为∠DCB=45°,∠BDC=75°,所以∠DBC=60°,又CD=3,由正弦定理得BD=3sin45°sin60°=2,在△ACD中同理可求得AD=3,在△ABD中,由余弦定理得,AB=22+32-2×3×2cos75°-30°=5(km).答:A、B两点间的距离为5km.求距离问题的注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定的三角形中求解.(2)确定用正弦定理还是余弦定理,如都可用,就选便于计算的定理.(3)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画一个空间图,再画一个平面图,处理问题既清楚又不易出错.[学以致用]1.如图所示,为了在一条河上建一座桥,施工前先要在河两岸打上两个桥位桩A,B,若要测算A,B两点之间的距离,需要测量人员在岸边定出基线BC,现测得BC=50米,∠ABC=105°,∠BCA=45°,则A,B两点的距离为________米.解析:在△ABC中,BC=50米,∠ABC=105°,∠BCA=45°,∴∠BAC=180°-∠ABC-∠BCA=180°-105°-45°=30°.由正弦定理得ABsin∠BCA=BCsin∠BAC∴AB=BC×sin∠BCAsin∠BAC=50×sin45°sin30°=50×2212=502(米).答案:502考向二测量高度问题例2为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气象仪器,这种仪器可以弹射到空中进行气象观测.如右图所示,A,B,C三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点A,B两地相距100米,∠BAC=60°,在A地听到弹射声音的时间比B地晚217秒.在A地测得该仪器至最高点H处的仰角为30°.(1)求A,C两地的距离;(2)求这种仪器的垂直弹射高度HC(已知声音的传播速度为340米/秒).[解](1)设BC=x,由条件可知AC=x+217×340=x+40,在△ABC中,由余弦定理,可得BC2=AB2+AC2-2AB×ACcos∠BAC,即x2=1002+(40+x)2-2×100×(40+x)×12,解得x=380,所以AC=380+40=420(米).故A,C两地的距离为420米.(2)在Rt△ACH中,AC=420米,∠HAC=30°,所以HC=AC·tan30°=420×33=1403(米).故这种仪器的垂直弹射高度为1403米.处理高度问题的注意事项(1)在处理有关高度问题时,要理解仰角、俯角(视线在水平线上方、下方的角分别称为仰角、俯角)是一个关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.[学以致用]2.[2014·西宁模拟]要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,求电视塔的高度.解:如图,设电视塔AB高为xm,则在Rt△ABC中,由∠ACB=45°得BC=x.在Rt△ADB中,∠ADB=30°,∴BD=3x.在△BDC中,由余弦定理得,BD2=BC2+CD2-2BC·CD·cos120°,即(3x)2=x2+402-2·x·40·cos120°,解得x=40,∴电视塔高为40米.考向三测量角度问题例3如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°的方向B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里,问乙船每小时航行多少海里?[解]如图,连接A1B2,由已知,A2B2=102(海里),A1A2=302×2060=102(海里),∴A1A2=A2B2.又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=102海里.由已知,A1B1=20海里,∠B1A1B2=105°-60°=45°,在△A1B2B1中,由余弦定理得B1B22=A1B21+A1B22-2A1B1·A1B2·cos45°=202+(102)2-2×20×102×22=200,∴B1B2=102(海里).因此,乙船的速度为10220×60=302(海里/时).测量角度问题的一般步骤(1)在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离.(2)用正弦定理或余弦定理解三角形.(3)将解得的结果转化为实际问题的解.同时注意把所求量放在有关三角形中,有时直接解此三角形解不出来,需要先在其他三角形中求解相关量.[学以致用]3.已知在岛A南偏西38°方向,距岛A3海里的B处有一艘缉私艇,岛A处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?(参数数据:sin38°=5314,sin22°=3314)解:如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC=0.5x,AC=5,依题意,∠BAC=180°-38°-22°=120°,由余弦定理可得BC2=AB2+AC2-2AB·ACcos120°,所以BC2=49,BC=0.5x=7,解得x=14.又由正弦定理得sin∠ABC=AC·sin∠BACBC=5×327=5314,所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.破译5类高考密码规范答题系列4——正、余弦定理在解决实际问题中的应用技巧[2013·江苏高考]如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min,在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=1213,cosC=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?[审题视点]第(1)问,在△ABC中,已知两角及一边长,利用同角三角函数的基本关系式及三角形内角和求得第三个角,再由正弦定理即可求得AB的长;第(2)问,设出在乙出发tmin后甲、乙距离最短时所行走的距离,再利用正弦定理即可求得结果;第(3)问,在△ABC中,利用正弦定理求得BC的长,再分别计算出甲、乙到达C点的时间,然后由甲、乙在C处相互等待不超过3min为条件列出不等式计算即可求得.[解](1)在△ABC中,因为cosA=1213,cosC=35,所以sinA=513,sinC=45.从而sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=513×35+1213×45=6365.由正弦定理ABsinC=ACsinB,得AB=ACsinB×sinC=12606365×45=1040(m).所以索道AB的长为1040m.(2)假设乙出发tmin后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t)×1213=200(37t2-70t+50),因0≤t≤1040130,即0≤t≤8,故当t=3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BCsinA=ACsinB,得BC=ACsinB×sinA=12606365×513=500(m).乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710m才能到达C.设乙步行的速度为vm/min,由题意得-3≤500v-71050≤3,解得125043≤v≤62514,所以为使两位游客在C处互相等待的时间不超过3min,乙步行的速度应控制在125043,62514(单位:m/min
本文标题:解三角形应用举例资料
链接地址:https://www.777doc.com/doc-3512444 .html