您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 小学数学概念及公式大全(含举例)
小学数学概念及公式大全(含举例)(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。例如:19865030532亿万个读作:一百九十八亿六千五百零三万零五百三十二2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。例如:一百九十八亿六千五百零三万零五百三十二19865030532亿万个3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(二)计量单位整数:135的计量单位是1;小数:1.35的计量单位是0.01,10.3009的计量单位0.0001;分数:173的计量单位是171,15195的计量单位是191。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。2.比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。四运算的意义(一)整数四则运算1、整数加法:把两个数合并成一个数的运算叫做加法。-在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。-加数+加数=和例如:2+3=52、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。-在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。例如:5-3=2-加法和减法互为逆运算。例如:12-3=99+3=12和—加数=另一个加数3、整数乘法:求几个相同加数的和的简便运算叫做乘法。-在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。-在乘法里,0和任何数相乘都得0.1和任何数相乘都得任何数。例如:5×0=0例如:5×1=5-一个因数×一个因数=积一个因数=积÷另一个因数例如:5×2=105=10÷24、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。例如:12÷3=4-在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。例如:12÷3=4,12是被除数,3是除数,4是商。-乘法和除法互为逆运算。例如:12÷3=44×3=12-在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。例如例如:12÷0=×被除数÷除数=商除数=被除数÷商被除数=商×除数(二)小数四则运算1.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3.小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。4.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。5.乘方求几个相同因数的积的运算叫做乘方。例如3×3=32(三)分数四则运算1.分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。3.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4.乘积是1的两个数叫做互为倒数。5.分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。(四)运算定律1.加法交换律:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律表示为:a+b=b+a甲数+乙数=乙数+甲数○+※=※+○15+4=4+152.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,这叫做加法结合律表示为:(a+b)+c=a+(b+c)(甲数+乙数)+丙数=甲数+(乙数+丙数)(○+※)+◎=○+(※+◎)(15+4)+6=15+(4+6)在加法中:0和0是好朋友,因为0+0=01和9是好朋友,因为1+9=102和8是好朋友,因为2+8=103和7是好朋友,因为3+7=104和6是好朋友,因为4+6=105和5是好朋友,因为5+5=103.乘法交换律:两个数相乘,交换因数的位置它们的积不变,这叫做乘法交换律表示为:a×b=b×a。甲数×乙数=乙数×甲数○×※=※×○15×4=4×154.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法结合律表示为:(a×b)×c=a×(b×c)。(甲数×乙数)×丙数=甲数×(乙数×丙数)(○×※)×◎=○×(※×◎)(15×4)×6=15×(4×6)在乘法中:4×25=1004×250=10004×0.25=14×2.5=1040×2.5=10040×25=10008×125=10008×12.5=1008×1.25=108×0.125=115×15=22525×25=625一定要记住:5×12=602×15=302×25=505×14=704×15=604×25=1005×16=806×15=906×25=1505×18=908×15=1208×25=2005×24=12012×15=18012×25=2505.乘法结合律:(1)两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,这叫做乘法律分配律。表示为:(a+b)×c=a×b+a×c(25+6)×4=25×4+6×4=100+24=124a×b+a×c=c×(a+b)25×4+5×4=4×(25+5)=4×30=120(2)两个数的差与一个数相乘,可以把两个数分别与这个数相乘再把两个积相减,这也叫做乘法律分配律。(a-b)×c=a×b-a×c(25-6)×4=25×4-6×4=100-24=76a×b-a×c=c×(a-b)25×4-5×4=4×(25-5)=4×20=80(3)隐“1”法计算乘法分配律的要点9=9×115=15×124=24×138=38×158=80×190=90×1165=165×1256=256×1例如:25×9+25=25×(9+1)=25×10=250125×9-125=125×(9-1)=125×8=1000一定要记住:101=100+199=100-1102=100+298=100-2103=100+797=100-3201=200+1199=200-1202=200+2198=200-2203=200+7197=200-36.减法的性质:(1)从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,这叫做减法的性质。表示为:a-b-c=a-(b+c)a-b+c=a-(b-c)251-28-72=251-(28+72)=251-100=151251-128+28=251-(128-28)=251-100=1517、除法的性质:从一个数里连续除去几个数,可以从这个数里除去所有除数的积,商不变,这叫做除法的性质。表示为:a÷b÷c=a÷(b×c)a÷b×c=a÷(b÷c)200÷25÷4=200÷(25×4)=200÷100=2a÷b×c=a÷(b÷c)8、特殊情况一个数+0=这个数例如:5+0=5一个数—0=这个数例如:5-0=5一个数×0=0一个数÷0没有意义,因为0不能作除数0÷一个非0的数=0例如:0÷5=0一个数—这个数=0例如:5-5=0一个非0的数÷这个数=1例如:5÷5=1一个数÷1=这个数例如:5÷1=5一个数×1=这个数例如:5×1=51÷一个数(不能为0)=这个数1(五)运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。6.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。7.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六)运算顺序1.第一级运算:加法和减法叫做第一级运算。2.第二级运算:乘法和除法叫做第二级运算。3、小数四则运算的运算顺序和整数四则运算顺序相同。4、分数四则运算的运算顺序和整数四则运算顺序相同。5、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。6、有括号的混合运算:先算小括号里面的数,再算中括号里面的数,最后算括号外面的数。五应用题(一)整数和小数的应用1简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
本文标题:小学数学概念及公式大全(含举例)
链接地址:https://www.777doc.com/doc-3527776 .html