您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元一次方程应用题及复习知识点
列一元一次方程解应用题的步骤有哪些?审设列解检验答1.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量例:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)2.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式②长方体的体积V=底面积×高=S·h=r2hV=长×宽×高=abc例:将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高。3.数字问题①一般可设个位数字为a,十位数字为b,百位数字为c.②十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.2/6/20208例:一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数。百位上的数为3,十位上的数为6,个位上的数为54.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.商品利润商品成本价2/6/202010%例1:某商品的进价是2000元,标价为3000元,商店要求以利润率等于5的售价打折出售,售货员应该打几折出售此商品?1=10进价打折销售:打1折打5折5=10进价x若售货员打折销售此商品则售价10x为3000此时的利润为-200010x3000元5.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.2/6/202012例1、A、B两码头相距150km,甲、乙两船分别从两码头开始相向而行,2.5h相遇,已知甲的速度是乙的速度的1.5倍,问甲、乙两船的速度各为多少?==甲路程+乙路程总路程,相遇路程速度和相遇时间例:有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.6.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例1:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2/6/202016例2:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?等量关系为:甲注水量+乙注水量-丙排水量=1利润=×100%利息=本金×利率×期数7.储蓄问题每个期数内的利息本金例:小张在银行存了一笔钱,月利率为2%,利息税为20%,5个月后,他一共取出了本息1080元,问它存入的本金是多少元?====本息和本金+实得利息实得利息利息-利息税利息税利息利息税率利息本金利率期数=2%5x利息=2%520%x利息税=2%52%520%xx实得利息1080=2%52%520%xxx2/6/2020198、劳力调配问题这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。例:某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.2/6/2020219、比例分配问题这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。例:有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
本文标题:一元一次方程应用题及复习知识点
链接地址:https://www.777doc.com/doc-3529534 .html