您好,欢迎访问三七文档
标准偏差从Wikipedia,自由的百科全书情节一个正态分布(或钟形曲线)。每个彩色带,有1个标准差的宽度。更多:经验法则与预期值0,标准偏差为1的正态分布的累积概率一个数据集平均50(蓝色所示)和20个标准偏差(σ)。例如,两个相同的均值和不同的标准偏差的样本人群。红色的人口意味着100和SD10;蓝色人口平均100和SD50。标准差是一种广泛使用的变异性或多样性中使用测量统计和概率论。它显示了多大变化从平均(或“分散“的存在意味着,或预期值)。低标准差表示,数据点往往是非常接近的平均,而高标准的偏差表明数据点分布在大范围的价值观。一个随机变量,统计人口数据集,或概率分布的标准偏差是其方差的平方根。虽然几乎比平均绝对偏差少强劲,这是代数简单。[1][2]一个有用的属性是标准差,方差不同,它的数据相同的单位表示。此外,以表达对人口的变化,标准差通常用来衡量在统计结论的信心。例如,投票数据误差在确定预期结果的标准偏差计算,如果进行多次相同的调查。报道保证金的错误通常是约两倍的标准差-半径95%的置信区间。在科学,研究人员通常报告的实验数据的标准偏差,只影响,远远超出标准差的范围内被认为是统计学意义-从因果关系的变化区分这是正常的随机误差或测量的变化。标准偏差也很重要,在金融,地方上的投资回报率上的标准差是衡量的波动,投资。当只有一个样品从人口数据是可用的,总体标准偏差,可以通过修改后的数量称为样本标准差估计,解释如下。内容[hide]1基本的例子2人口值的定义2.1离散随机变量2.2连续型随机变量3估计3.1样品的标准偏差3.2样本的标准偏差3.3其他估计3.4取样的标准差的置信区间4身份和数学性质5释义及适用范围5.1应用实例5.1.1气候5.1.2体育5.1.3财务5.2几何解释5.3切比雪夫不等式5.4正态分布的数据规则6标准差与平均值之间的关系7快速计算方法7.1加权计算8相结合的标准偏差8.1人口的统计数据8.2样品的统计数据9历史10参见11参考文献12外部链接[编辑]基本的例子考虑人口以下八个值组成:这8个数据点的平均值(平均值)5:计算总体标准偏差,首先从平均计算每个数据点的差异,每平方米的结果:下一步计算这些值的平均值,并采取平方根:这个数量是人口的标准差,它等于方差的平方根。公式是有效的,只有八个值,我们开始形成完整的人口。如果他们,而不是随机抽样,得出一些较大的,“父”人口,那么我们应该使用7而不是8(这是N-1)(N),在最后一个公式的分母,然后由此获得的数量将被称为样本标准差。看到下面的部分估计更多的细节。一个稍微复杂的现实生活的例子,在美国成年男子平均身高大约是70“的标准差约3”。这意味着,大多数男人(约68%,假设正态分布)“的平均高度在3(67”-73“)-一个标准差-几乎所有的人(约95%)有高度在6“平均(64”-76“)-两个标准差。如果标准偏差为零,那么所有的人正是70“高。如果标准偏差分别为20”,那么男人会多变量高峰,一个约50“-90”的典型范围。三个标准偏差为99.7%的样本人口研究,假设分布是正常的(钟形)。[编辑]人口值的定义设X是一个随机变量与平均值μ:在这里,运营商E为X的平均预期值。X的标准差是数量也就是说,标准偏差σ(西格玛),即X的方差的平方根,它是平均值的平方根(x-μ)2。该分布的随机变量的标准偏差的(单因素)的概率分布是相同。并非所有随机变量有一个标准的偏差,因为这些预期值不存在。例如,一个随机变量,如下标准偏差柯西分布是不确定的,因为它是不确定的预期值μ。[编辑]离散型随机变量其中X从有限的数据与每个值具有相同的概率×1,×2,...,xN的随机值的情况下,标准差为或者,利用求和符号,值,而不是有平等的概率,如果有不同的概率,让×1的概率为p1,×2的概率为p2,...,N有概率PN。在这种情况下,将标准偏差[编辑]连续随机变量一个标准差,连续实值随机变量X的概率密度函数P(X)积分定积分的多组随机变量X的可能值范围x。在一个分布参数的家庭的情况下,标准差,可以在参数方面表示。例如,在对数正态分布参数μ和σ2的情况下,标准差为[(EXP(σ2)-1)EXP(2μ+σ2)]1/2。[编辑]估计一个能找到的情况下,整个人口(如标准偏差标准化测试),其中每一个成员的人口进行采样。在哪里不能做的情况下,标准差σ估计,通过检查从人口采取随机抽样。一些估计如下:[编辑]随着样本的标准偏差有时用一个Σ的估计是样本的标准偏差的N表示,定义如下:这估计有均匀小均方误差比样本的标准偏差(见下文),是人口正态分布的最大似然估计[需要的引证]。但是,这种估计,适用于小型或中等大小的样品时,往往是太低:它是一种有偏估计。样本的标准偏差是随着人口的标准偏差的离散随机变量,可以假设正是从数据集,其中每个值的概率是成正比,其在数据集的多重价值。[编辑]随着样本的标准偏差最常见的估计,用于为Σ是一个调整后的版本,样本标准差,由和记定义为如下:哪里样本项目的观测值,这些意见的平均值。此更正(使用N-1的N)被称为贝塞尔修正。这种修正的原因是,第2是一个无偏估计的方差σ2的底层人口,如果这种变异存在和更换独立样本值绘制。此外,如果N=1,那么有没有偏离平均值的指示,和标准偏差,因此应该是不确定的。然而,s是不是一个标准偏差σ的无偏估计,它往往低估了人口标准偏差[3]。长期样本标准差,用于裸估计(用N),而长期的样本标准差,用于校正估计(用N-1)。分母N-1个自由度的数量在矢量残差,。[编辑]其他估计进一步的信息:无偏估计的标准偏差和一个估计的偏差虽然被称为是正态分布的随机变量时,对σ的无偏估计公式是复杂和金额轻微修正。此外,无偏(在这个意义上的字)并不总是可取的。[需要的引证][编辑]一个采样的标准差的置信区间获得通过抽样分布的标准偏差,我们本身并非绝对准确。如果样本数非常低,这是特别真实。这种效应可以被描述的置信区间或CI。例如对于N=2的SD95%CI为0.45*SD31.9*的SD。换句话说,在95%的病例分布的标准偏差可以达到了31倍,较大或最多的一个因素2小!对于N=10的区间为0.69*SD1.83支持SD,实际SD仍然可以几乎是一个因素2比采样的SD高。对于N=100,这是下降到0.88*SD到1.16*SD。因此,为了确保采样SD是接近实际的SD,我们需要大量采样点。[编辑]认同和数学性质标准差是不变的,根据变化的位置,规模,直接与随机变量的规模。因此,为常数c和随机变量X和Y:标准差的两个随机变量的总和,可以与他们个人的标准偏差以及它们之间的协方差:哪里和站在方差和协方差,分别。计算偏差平方和可以时刻直接从数据计算。样本标准差,可以计算为:样本标准差,可以计算为:对于与平等的概率在所有点有限的人口,我们有因此,标准差是相等的平方根(平均平方少的平均平方)。看到这一事实证明,类似的结果为样本标准差为方差的计算公式。[编辑]释义及应用一个大的标准差表示,数据点远离平均值和标准偏差小,表明他们聚集各地的平均密切。例如,每三个种群{0,0,14,14},{0,6,8,14}和{6,6,8,8}有平均7。其标准偏差为7,5,1,分别。三分之一的人口有一个比其他两个标准差小得多,因为它的值都接近700。在一个松散的感觉,标准偏差告诉我们多远意味着数据点往往是。数据点本身,这将有相同的单位。例如,如果数据集{0,6,8,14}代表的四个兄弟姐妹在多年的人口的年龄,标准差为5年。另一个例子是,人口{1000,1006,1008,1014}代表由四名运动员,以米为单位测量走过的距离。它的平均1007米,5米的标准偏差。标准差,可作为衡量的不确定性。例如,在物理科学,应给予报道的一组重复的标准偏差测量,这些测量精度。当决定是否测量与理论预测一致,这些测量标准偏差是至关重要的:如果测量的平均值太远的预测(测量距离在标准偏差),然后被测试的理论可能需要加以修订。这是有道理的,因为他们属于,可以合理地预期发生,如果预测是正确的,适当的量化标准偏差值的范围之外。见预测区间。[编辑]应用实例了解的一组值的标准偏差的实用价值,是在欣赏从“平均”(意思)是有多大变化。[编辑]气候作为一个简单的例子,考虑两个城市,一个内陆和沿海的每日平均最高气温。这是有助于了解海岸附近的城市范围内每天的最高气温是比城市的内陆小。因此,而这两个城市可能每个人都有相同的平均最高气温,沿海城市的日最高气温的标准差,将是比内陆城市,在任何特定的一天,作为实际最高温度更容易是远从平均最高温度比沿海的内陆城市。[编辑]体育看到它的另一种方法是考虑运动队。在任何类别中,会有球队,利率高一些事情和别人不善。机会是,球队在积分榜上导致不会显示这种差距,但在大多数类别执行。越低,他们的收视率在每个类别的标准偏差,更平衡和一致的,他们往往会是。以更高的标准差的球队,但是,将更加难以预测。例如,一个团队,一直是坏,在大多数类别,将有一个低标准的偏差。一直是在大多数类别的一个团队,也将有一个低的标准偏差。然而,一队一个高标准的偏差可能是团队分数了很多强大的罪行,但也承认了很多(弱国防),或反之亦然,可能有一个贫穷的罪行,但难以补偿上得分。试图预测哪支球队,在任何一天,将赢得,可能包括在各队的“统计”的评分标准偏差,在这种异常可以匹配的长处与短处,试图了解哪些因素可能较强的指标为准最终的评分结果。在赛车中,一名司机在连续圈计时。较低的单圈时间的标准偏差的驱动程序是多用更高的标准偏差的驱动程序相一致。这个信息可以用来帮助理解其中的机会可能会发现,以减少单圈时间。[编辑]金融在金融,标准差是一个给定的资产(股票,债券,房地产等),或资产组合的风险价格波动所带来的风险表示[4](积极管理的共同基金,指数相互资金,或交易所买卖基金)。风险是一个重要因素,决定如何有效地管理投资组合,因为它决定在资产和/或投资组合回报的变化,使投资者的投资决策(被称为均值-方差优化)的数学基础。风险的基本概念是,因为它增加,预期的投资回报应该增加以及增加,被称为“风险溢价”。换句话说,投资者应预期上的投资回报率较高的投资时,进行更高层次的风险或不确定性。评估投资价值时,投资者应估计预期收益和未来收益的不确定性。标准差提供了量化的估计未来收益的不确定性。例如,让我们假设一个投资者有两股之间做出选择。股票一个超过过去20年有10%的平均回报,标准偏差20个百分点(PP)和B股,在同一时期,有12%的平均回报,而是一个更高的标准偏差30页风险和回报的基础上,投资者可能会决定股票是安全的选择,因为B股的额外两个百分点的回报是不值得的额外10页的标准差(更大的风险或不确定性的预期回报)。B股很可能属于一个相同的情况下,初始投资(但也超过最初的投资),往往比股票短,估计返回上平均只有两个%以上。在这个例子中,股票A有望获得10%左右,再加上或减去20页(30%-10%的范围内),约三分之二在未来的一年回报。考虑更极端的可能回报或未来的结果时,投资者应该想到结果从70%-50%,其中包括三个标准差的结果,从平均回报高达10%,加上或减去60页,或范围(可能回报率约99.7%)。安全返回在给定的期限内平均(算术平均数)计算,将产生该资产的预期回报。对于每一个时期,减去平均差异的实际回报结果的预期回报。现蕾在每个时期的差异,并取平均值,使整体资产的回报差异。差异较大的,更大的风险进行安全。寻找这种差异的平方根会给问题的投资工具的标准偏差。总体标准差是用来设置的宽度,广泛采用的技术分析工具布林。例如,上布林带定为X+nσxn的最常用的值是2。有大约5%的机会外出,假设回报正态分布。[编辑]几何解释获得一些几何的见解和澄清,我们将开始与三个值,X1,X2,X3的人口。这定义了一个点,P=(X1,X2,X3)在R3。考虑线L={(R,R,R):R∈R,}。这是“主对角线”经历的起源。如果我们的三个定值均相等,那么标准偏差将是零和P就趴在L。所以它不是不合理的假设标准差与P的距离为L。,这
本文标题:标准偏差
链接地址:https://www.777doc.com/doc-3550510 .html