您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 广东省佛山市2014-2015学年高二数学上学期期末试卷 理(含解析)
-1-广东省佛山市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)椭圆+=1的短轴长为()A.B.2C.2D.42.(5分)若直线ax﹣y+1=0与直线2x+y+2=0平行,则a的值为()A.﹣2B.﹣1C.D.13.(5分)圆x2+y2﹣2x+4y+3=0的圆心坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣2,4)D.(2,﹣4)4.(5分)若¬p∨q是假命题,则()A.p∧q是假命题B.p∨q是假命题C.p是假命题D.¬q是假命题5.(5分)已知命题p:“正数a的平方不等于0”,命题q:“a不是正数,则它的平方等于0”,则p是q的()A.逆命题B.否命题C.逆否命题D.否定6.(5分)已知平面α,β,直线m,n,下列命题中不正确的是()A.若m⊥α,m⊥β,则α∥βB.若m∥n,m⊥α,则n⊥αC.若m⊥α,m⊂β,则α⊥βD.若m∥α,α∩β=n,则m∥n7.(5分)已知a,b∈R,则“>”是“log2a>log2b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)已知F1、F2是椭圆的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此椭圆上,则此椭圆的离心率为()A.B.﹣1C.D.﹣19.(5分)已知圆(x+2)2+y2=16的圆心为M,设A为圆上任一点,N(3,0),线段AN的垂直平分线交直线MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线10.(5分)如果对于空间任意n(n≥2)条直线总存在一个平面α,使得这n条直线与平面α所成的角均相等,那么这样的n()A.最大值为3B.最大值为4C.最大值为5D.不存在最大值-2-二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知空间向量=(x﹣1,1,﹣x),=(﹣x,3,﹣1),若⊥,则x的值为.12.(5分)已知变量x,y满足约束条件,则z=x+y的最大值为.13.(5分)某几何体的三视图如图所示,则它的体积为.14.(5分)如图,点A,B分别在x轴与y轴的正半轴上移动,且AB=2,若点A从(,0)移动到(,0),则AB中点D经过的路程为.三、解答题(共6小题,满分80分)15.(12分)如图,等腰直角△ABC的直角顶点C(0,﹣1),斜边AB所在的直线方程为x+2y﹣8=0.(1)求△ABC的面积;(2)求斜边AB中点D的坐标.16.(12分)如图,正方体ABC﹣A1B1C1D1中,点F为A1D的中点.-3-(Ⅰ)求证:A1B∥平面AFC;(Ⅱ)求证:平面A1B1D⊥平面AFC.17.(14分)在平面直角坐标系xOy中,圆C与x轴、y轴都相切,直线l:x+y﹣4=0平分圆C的面积.(1)求圆C的方程;(2)过原点O的直线l1将圆C的弧长分成1:3的两部分,求直线l1的斜率.18.(14分)如图1,在△PBC中,∠C=90°,PC=4,BC=3,PD:DC=5:3,AD⊥PB,将△PAD沿AD边折起到SAD位置,如图2,且使SB=.(Ⅰ)求证:SA⊥平面ABCD;(Ⅱ)求平面SAB与平面SCD所成锐二面角的余弦值.19.(14分)已知曲线C:x2=﹣2py(p>0),点M是曲线C上的一个动点,过点M且与曲线C相切的直线l的方程为x+y﹣1=0.(Ⅰ)求曲线C的方程;(Ⅱ)点A、B是曲线C上的两点,O为原点,直线AB与x轴交于点P(2,0),记OA、OB的斜率为k1、k2,试探求k1、k2的关系,并证明你的结论.20.(14分)已知圆:x2+y2=64,圆C与圆O相交,圆心为C(9,0),且圆C上的点与圆O上的点之间的最大距离为21.(Ⅰ)求圆C的标准方程;(Ⅱ)在x轴上是否存在定点P,使得过点P的直线l被圆O与圆C截得的弦长d1、d2的比值总等于同一常数λ?若存在,求点P的坐标及λ的值,若不存在,说明理由.-4-广东省佛山市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)椭圆+=1的短轴长为()A.B.2C.2D.4考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:直接利用椭圆的标准方程求解即可.解答:解:椭圆+=1可得b=,椭圆+=1的短轴长为:2.故选:C.点评:本题考查椭圆的简单性质的应用,基本知识的考查.2.(5分)若直线ax﹣y+1=0与直线2x+y+2=0平行,则a的值为()A.﹣2B.﹣1C.D.1考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:利用直线平行的充要条件即可得出.解答:解:∵直线ax﹣y+1=0与直线2x+y+2=0平行,∴,解得a=﹣2,故选:A.点评:本题考查了直线平行的充要条件,属于基础题.3.(5分)圆x2+y2﹣2x+4y+3=0的圆心坐标为()A.(﹣1,2)B.(1,﹣2)C.(﹣2,4)D.(2,﹣4)考点:圆的一般方程.专题:计算题;直线与圆.分析:由方程x2+y2﹣2x+4y+3=0可得(x﹣1)2+(y+2)2=2,即可得到圆心的坐标.解答:解:由方程x2+y2﹣2x+4y+3=0可得(x﹣1)2+(y+2)2=2,-5-∴圆心坐标为(1,﹣2).故选:B.点评:本题考查了圆的标准方程及其配方法,属于基础题.4.(5分)若¬p∨q是假命题,则()A.p∧q是假命题B.p∨q是假命题C.p是假命题D.¬q是假命题考点:复合命题的真假.专题:常规题型.分析:由题意,可得¬p,q的真假性,进而得到正确选项.解答:由于¬p∨q是假命题,则¬p是假命题,q是假命题,所以p是真命题,q是假命题,所以p∧q是假命题,p∨q是真命题,¬q是真命题,故选A.点评:本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.5.(5分)已知命题p:“正数a的平方不等于0”,命题q:“a不是正数,则它的平方等于0”,则p是q的()A.逆命题B.否命题C.逆否命题D.否定考点:四种命题.专题:简易逻辑.分析:写出命题P与命题q的条件与结论,再根据四种命题的定义判断即可.解答:解:命题P:正数a的平方不等于0;命题q:“a不是正数,则它的平方等于0”;满足否命题的定义,故命题P是命题q的否命题.故选:B.点评:本题考查四种命题的定义;基本知识的考查.6.(5分)已知平面α,β,直线m,n,下列命题中不正确的是()A.若m⊥α,m⊥β,则α∥βB.若m∥n,m⊥α,则n⊥αC.若m⊥α,m⊂β,则α⊥βD.若m∥α,α∩β=n,则m∥n考点:命题的真假判断与应用.专题:空间位置关系与距离.分析:利用在与平面,直线与直线的平行与垂直的判定定理以及性质定理推出结果即可.解答:解:若m⊥α,m⊥β,则α∥β,满足平面与平面平行的判定定理,所以A正确;若m∥n,m⊥α,则n⊥α,满足满足直线与平面平行的性质,所以B正确;若m⊥α,m⊂β,则α⊥β,满足平面与平面垂直的性质,所以C正确;若m∥α,α∩β=n,则m∥n,也可能得到m,n是异面直线,所以D不正确.故选:D.点评:本题考查直线与直线,直线与平面,平面与平面平行与垂直的判断与性质,考查基本知识的应用.-6-7.(5分)已知a,b∈R,则“>”是“log2a>log2b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:分别解出关于>以及log2a>log2b”的a,b的范围,从而得到答案.解答:解:由>,解得:a>b≥1,由log2a>log2b解得:a>b>0,故“>”是“log2a>log2b”的充分不必要条件,故选:A.点评:本题考察了充分必要条件,考察二次函数以及对数函数的性质,是一道基础题.8.(5分)已知F1、F2是椭圆的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此椭圆上,则此椭圆的离心率为()A.B.﹣1C.D.﹣1考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过题意画出图形,利用勾股定理及椭圆的定义计算即得结论.解答:解:不妨设椭圆方程为:+=1(a>b>0),则M点必在y轴上,如图,连结PF2,∵△MF1F2为正三角形,∴PF1=MF1=F1F2=c,PF2==c=2a﹣c,∴2a=(+1)c,即e==,故选:A.-7-点评:本题考查椭圆的简单性质,注意解题方法的积累,属于基础题.9.(5分)已知圆(x+2)2+y2=16的圆心为M,设A为圆上任一点,N(3,0),线段AN的垂直平分线交直线MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线考点:轨迹方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:已知圆(x+2)2+y2=16,易知圆心和半径.A为圆上任一点和N(2,0),线段AN的垂直平分线上任一点到两短点的距离相等且交MA于点P.有PN=PA,所以PM﹣PN=AM=4,即为动点P到两定点M、N的距离之差为常数4,根据双曲线的定义可得结论..解答:解:已知圆(x+2)2+y2=16,则的圆心M(﹣2,0),半径为4.A为圆上任一点,且AM=4N(3,0),线段AN的垂直平分线上任一点到两端点的距离相等且交MA于点P.有PN=PA所以PM﹣PN=AM=4即为动点P到两定点M、N的距离之差为常数4,所以动点P的轨迹是双曲线.故选:C.点评:求点的轨迹方程常用的有定义法、待定系数法、直译法和间接法.其中定义法是最快捷的.这里就直接利用了双曲线的定义直接得到结论.10.(5分)如果对于空间任意n(n≥2)条直线总存在一个平面α,使得这n条直线与平面α所成的角均相等,那么这样的n()A.最大值为3B.最大值为4C.最大值为5D.不存在最大值考点:平面的基本性质及推论.专题:探究型.分析:分别探究直线的条数为2、3、4的情况,由线面角的定义、线线位置关系以及空间几何体进行判断.解答:解:当2条直线时,一定作出与它们都平行的平面,故这两条直线与平面所成的角是0度;当3条直线时,当它们共面时,一定存在平面与它们所成的角相等;不共面时,一定可以它们平移到一点,构成一个椎体,则存在一个平面作为椎体的底面,并且使得此底面与三条直线所成的角相等;-8-当为4条直线时,且三条在一面内,另一条在面外,则面内3条要与一面成角等的话必须是0度,但另一条不可能也成0度,故不存在符合题意的平面.故选A.点评:本题是一个探究型的题目,需要耐心的一一进行分析,可以借助于空间几何体和反例进行说明,必须做到脑中有图,考查了分析、解决问题和空间信息能力.二、填空题(共4小题,每小题5分,满分20分)11.(5分)已知空间向量=(x﹣1,1,﹣x),=(﹣x,3,﹣1),若⊥,则x的值为﹣1或3.考点:空间向量的数量积运算.专题:空间向量及应用.分析:由⊥,可得=0,解出即可.解答:解:∵⊥,∴=﹣x(x﹣1)+3+x=0,化为x2﹣2x﹣3=0,解得x=3或﹣1.故答案为:﹣1或3.点评:本题考查了向量垂直与数量积之间的关系,考查了计算能力,属于基础题.12.(5分)已知变量x,y满足约束条件,则z=x+y的最大值为2.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得到如图的△AB0及其内部,再将目标函数z=x+y对应的直线进行平移,观察直线在y轴上的截距变化,可得当x=2且y=0时,z=x+y取得最大值2.解答:解:作出不等式组表示的平面区域,得到如图的△AB0及其内部,其中A(2,0),B(2,﹣2),O为坐标原点.设z=F(x,y)=x+y,将直线l:z=x+y进行平移,观察直线在y轴上的截距变化,可得当l经过点A时,目标函数z达到最大值∴z最大值=F(2,0)=2故答案为:2-9-点评:本题给出二元一次不等式组,求目标函数z=x+y的最大值,着重考查了二元一次不等式组表示的平面区域和简单
本文标题:广东省佛山市2014-2015学年高二数学上学期期末试卷 理(含解析)
链接地址:https://www.777doc.com/doc-3557592 .html