您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 反比例函数与面积问题
反比例函数的应用保俶塔实验学校陈颜俊PDoyx1.如图,点P是反比例函数图象上的一点,PD⊥x轴于D.则△POD的面积为.xy212.如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为1,则这个反比例函数的关系式是.PDoyxPyxOCxy22KSSK的面积不变性(0)kykx(0)2kk(0)kk注意:(1)面积与P的位置无关(2)当k符号不确定的情况下须分类讨论PQ0xy)(yx,P0xy)(yx,S△ABC=︱K︱SABCD=2︱K︱BDS=︱k︱21oyP(m,n)xkyxABCDCoxxkyyA4yxA(2,2)Oyx⑴直线OA与双曲线的另一交点B的坐标.BDC⑵△BDA的面积是多少?B(-2,-2)8曲直结合3、在双曲线上任一点分别作x轴、y轴的垂线段,与x轴y轴围成矩形面积为12,求函数解析式__________。xky(X0)yxOxy12xy12或AoyxBS1S2xy3如图,A,B是双曲线上的点,分别经过A,B两点向X轴、y轴作垂线段,若.211SSS,则阴影4Oyxs1s2如图,点P、Q是反比例函数图象上的两点,过点P、Q分别向x轴、y轴作垂线,则S1(黄色三角形)S2(绿色三角形)的面积大小关系是:S1____S2.PQ趁热打铁,大显身手(提高篇)∟∟=xyOP1P2P3P41234如图,在反比例函数的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则1234PPPP,,,xy2yx(x0)123SSS,,123SSS.(x0)2yx3216思考:1.你能求出S2和S3的值吗?132.S1呢?1yxoBEACD若A(m,n)是反比例函数图象上的一动点,其中0m3,点B的坐标(3,2),过点A作直线AC∥x轴,交y轴于点C;过点B作直线BD∥y轴交x轴于点D,交直线AC于点E,当四边形OBEA的面积为6时,请判断线段AC与AE的大小关系,并说明理由。yBAxo如图,已知,A,B是双曲线上的两点,)0(kxky(2)在(1)的条件下,若点B的横坐标为3,连接OA,OB,AB,求△OAB的面积。(1)若A(2,3),求K的值yBAxo(3)若A,B两点的横坐标分别为a,2a,线段AB的延长线交X轴于点C,若,求K的值C6AOCS.1,6)2(:xyxy解.3,22,3yxyx或解得).2,3(),3,2(BAAyOBxMNy=kx+1的图像交于A、B两点,点A的纵坐标是3.已知:如图,反比例函数与一次函数xy6(1)求这个一次函数的解析式(2)求△AOB的面积.变式练习如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=k/x的图象上,点P(m,n)是图象上任意一点,过点P分别作x轴,y轴的垂线,垂足分别为E,F,拓展提高G若设矩形OEPF和正方形OABC不重合部分的面积为S,写出S关于m的函数关系式.总结提高一个性质:反比例函数的面积不变性两种思想:分类讨论和数形结合yBAxo如图,已知,A,B是双曲线上的两点,)0(kxky(1)若A(2,3),求K的值(2)在(1)的条件下,若点B的横坐标为3,连接OA,OB,AB,求△OAB的面积。CDEyBAxo如图,已知,A,B是双曲线上的两点,)0(kxky(1)若A(2,3),求K的值(2)在(1)的条件下,若点B的横坐标为3,连接OA,OB,AB,求△OAB的面积。C(5,0)yBAxo如图,已知,A,B是双曲线上的两点,)0(kxky(1)若A(2,3),求K的值(2)在(1)的条件下,若点B的横坐标为3,连接OA,OB,AB,求△OAB的面积。CDE2、正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为()(A)1(B)(C)2(D)1x3252DCBAOyx
本文标题:反比例函数与面积问题
链接地址:https://www.777doc.com/doc-3564609 .html