您好,欢迎访问三七文档
华东师大版-七年级(上)数学-第五章第五章相交线与平行线的复习二、重点和难点1、进一步巩固邻补角、对顶角的概念和性质2、理解垂线、垂线段的概念和性质3、掌握两条直线平行的判定和性质重点:垂线的性质和平行线的判定和性质。难点:平行线的判定和性质。一、学习目标相交线两条直线相交两条直线被第三条所截一般情况邻补角对顶角邻补角互补对顶角相等特殊垂直在同一平面内,过一点有且只有一条直线与已知直线垂直垂线段最短点到直线的距离同位角、内错角、同旁内角平行线平行公理及其推论平行线的判定平行线的性质知识构图12与是邻补角。2.对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角是对顶角。3.对顶角性质:对顶角相等。两个特征:(1)具有公共顶点;(2)角的两边互为反向延长线。5.4.n条直线相交于一点,6.就有n(n-1)对对顶角。12(1)(2)12341.邻补角:.如图(1)做男装设计多年,设计了各种时尚男装与商务男装,其中的辛酸苦辣只有设计人才懂。有厌倦也有喜乐,有成功也有沮丧,当激动化作泪水时,远处一定有爆版在向我们微笑招手。于是不管春夏秋冬,风吹雨打,烈日寒冰。都会有一群设计师,南来北往行走在全国各大城市,或香港日韩,欧美,巴黎,米兰,的商场和市场。是偷拍也好,默记也罢,购买样衣也行。其实,都是一种采风行为!当这些风景被闪转腾挪或转化到服装的各个部位时,也会推动服装发展的一点进步。在新时期服装发展的进程中,是否会有你浓重的一笔。这一笔刚劲有力或柔情似水,直来直去或拐弯抹角;似江河滔滔不绝,如小溪轻言细语。把春夏秋冬的眷恋装进口袋里,风花雪月的故事安在拉链上。独领风骚的领子和胳膊肘向外拐的袖子。一个个铆钉,一个个气眼,一粒粒扣子,这里星星点点,这里星光灿烂。这里风景独好!当织带和泡沫成为主流,当绣花和激光成为宠儿,面料说我才是王者。我的王,你真的可以一统江山吗?然而,水可载舟亦可覆舟。服装设计师是骄傲的,同时也是卑微的。当你看到服装店里挂着你设计的衣服时,或者看到身边的路人穿着你设计的衣服时,你可以自豪的说”我骄傲哇”!但是,你要问起他们2.直线AB、CD、EF相交与于O,图中有几对对顶角?∠AOC的对顶角是_______∠COF的对顶角是________∠AOC的邻补角是____。∠EOD的邻补角是_______。∠BOD∠DOE∠COB,∠AOD∠DOF,∠COE1.:2:3ABCDOAOCAODBOD例直线与相交于,求的度数。ABCDO在解决与角的计算有关的问题时,经常用到代数方法。解:设∠AOC=2x°,则∠AOD=3x°所以2x°+3x°=180°因为∠AOC+∠AOD=180°解得x=36°所以∠AOC=2x=72°∠BOD=∠AOC=72°答:∠BOD的度数是72°009036DOEAOE,BOEBOC求、的度数。OABCDEF例2.已知直线AB、CD、EF相交于点O,解:因为直线AB与EF相交与点O所以∠AOE+∠BOE=180°因为∠AOE=36°所以∠BOE=180°-∠AOE=180°-36°=144°因为∠DOE=90°所以∠AOD=∠AOE+∠DOE=126°又因为∠BOC与∠AOD是对顶角所以∠BOC=∠AOD=126°ABCDO(二)、垂直:2、画法:3、性质:两条直线相交所形成的四个角中有一个是直角时叫两条直线互相垂直。过一点画一条直线的垂线。PaQ(1)、在同一平面内,过一点有且只有一条直线垂直于已知直线。pABCDE(2)、垂线段最短。点到直线的距离:bbc1、定义:1.垂线的定义:两条直线相交,所构成的四个角中,有一个角是90°时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线。它们的交点叫垂足。2.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。(2):直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。3.点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指垂线段的长度,是指一个数量,是有单位的。垂线(直交)1.5ABCDOOEABODOECOEAOD例直线、相交于点,,垂足为,且。求的度数。┓ABCDOE0000:551803090120DOECOECOECOECOEOEABBOEBOCBOECOE00解由邻补角的定义知:COE+DOE=180,又由又由对顶角相等得:AOD=BOC=120此题需要正确地应用、对顶角、邻补角、垂直的概念和性质。C理由:直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。例3:如图,要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟的长度才能最短?请画出图来,并说明理由。ADCBEF例4:你能量出C到AB的距离,B到AC的距离,A到BC的距离吗?1、下列说法正确的是()ABCD(A)线段AB叫做点B到直线AC的距离(B)线段AB的长度叫做点A到直线AC的距离(C)线段BD的长度叫做点D到直线BC的距离(D)线段BD的长度叫做点B到直线AC的距离D1、同位角的位置特征是:2、内错角的位置特征是:3、同旁内角的位置特征是:(1)在截线的同旁,(2)在被截两直线的同方向。(1)在截线的两旁,(2)在被截两直线之间。(1)在截线的同旁,(2)在被截两直线之间。F1375286DCABE4被截线截线三线八角∠1和∠2不是同位角,如图中的∠1和∠2是同位角吗?为什么?1212∵∠1和∠2无一边共线。∠1和∠2是同位角,∵∠1和∠2有一边共线、同向且不共顶点。练一练ACBDE12答:∠EAC答:∠DAB答:∠BAC,∠BAE,∠2∠1与哪个角是同旁内角?∠2与哪个角是内错角?例1.∠1与哪个角是内错角?ABDCFE123456789101112练一练(1)∠1和∠9是由直线、被直线所截成的角;(2)∠6和∠12是由直线、被直线所截成的角;(3)∠4和∠6是由直线、被直线所截成的角;(4)由直线AB、CD被直线EF所截成的同位角有;(5)∠7和∠12是角;在判断两个角时一定要先知道由哪两条直线被哪条直线所截呦!ABCDEF同位ABEFCD内错ABCDEF同旁内∠1和∠9、∠4和∠12、∠2和∠10、∠3和∠11同旁内1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线。2.两直线的位置关系:在同一平面内,两直线的位置关系只有两种:(1)相交;(2)平行。3.平行线的基本性质:(1)平行公理经过直线外一点,有且只有一条直线与已知直线平行。(2)推论(平行线的传递性)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。4.同位角、内错角、同旁内角的概念同位角、内错角、同旁内角,指的是一条直线分别与两条直线相交构成的八个角中,不共顶点的角之间的特殊位置关系。它们与对顶角、邻补角一样,总是成对存在着的。平行(1)定义法;在同一平面内不相交的两条直线是平行线。(2)传递法;两条直线都和第三条直线平行,这两条直线也平行。(4)三种角判定(3种方法):在这六种方法中,定义一般不常用。同位角相等,两直线平行。内错角相等,两直线平行。同旁内角互补,两直线平行。(3)因为a⊥c,a⊥b;所以b//cabCFABCDE1234判定两直线平行的方法有三种:综合应用:ABCDEF1231、填空:(1)、∵∠A=____,(已知)AC∥ED,(_____________________)(2)、∵AB∥______,(已知)∠2=∠4,(______________________)45(3)、___∥___,(已知)∠B=∠3.(______________________)试一试,你准行!模仿上题自己编题。(考查平行线的性质或判定)∠4同位角相等,两直线平行。DF两直线平行,内错角相等。ABDF两直线平行,同位角相等.判定性质性质∴∴∴∵ABCDEF123456如图:填空,并注明理由。(1)、∵∠1=∠2(已知)——∥——()∵∠3=∠4(已知)——∥——()∵∠5=∠6(已知)——∥——()∵∠5+∠AFE=180(已知)——∥——()∵AB∥FC,ED∥FC(已知)——∥——()∴∴∴∴∴ABED内错角相等。两直线平行,AFBE同位角相等,两直线平行。BCEF内错角相等,两直线平行。AFBE同旁内角互补,两直线平行。ABED平行于同直线的两条直线互相平行。平行线的判定应用练习:证明:∵∠DAC=∠ACB(已知)ABCDEF∴AD//BC(内错角相等,两直线平行)∵∠D+∠DFE=180°(已知)∴AD//EF(同旁内角互补,两直线平行)∴EF//BC(平行于同一条直线的两条直线互相平行)例2.已知∠DAC=∠ACB,∠D+∠DFE=1800,求证:EF//BC平行线的判定两直线平行条件结论同位角相等内错角相等同旁内角互补条件同位角相等内错角相等同旁内角互补结论两直线平行夹在两平行线间的垂线段的长度,叫做两平行线间的距离。平行线的性质证明:由:∠1+∠2=180°(已知)4123ABCEFD(同旁内角互补,两直线平行)∠1=∠3(对顶角相等)∠2=∠4(对顶角相等)所以∠3+∠4=180°(等量代换)AB//CD.例1.如图已知:∠1+∠2=180°,求证:AB∥CD。证明:∵由AC∥DE(已知)ADBE12C∴∠ACD=∠2(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴AB∥CD(内错角相等,两直线平行)例2.如图,已知:AC∥DE,∠1=∠2,试证明AB∥CD。ABCDFGE∵EF⊥AB,CD⊥AB(已知)∴AD∥BC(垂直于同一条直线的两条直线互相平行)∴∠EFB=∠DCB(两直线平行,同位角相等)∵∠EFB=∠GDC(已知)∴∠DCB=∠GDC(等量代换)∴DG∥BC(内错角相等,两直线平行)∴∠AGD=∠ACB(两直线平行,同位角相等)证明:例3.已知EF⊥AB,CD⊥AB,∠EFB=∠GDC,求证:∠AGD=∠ACB。例4.两块平面镜的夹角应为多少度?如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入射到а上,经两次反射后的反射光线平行于а,则角θ=_____度'OBаβθO'OBA123450://'//1234//1'//452360OAOBOAOB00分析依题意有,,且,,由得由得,于是3=4=5=由于3+4+5=180,即=60060祝同学们学习进步
本文标题:最新种植设计规范
链接地址:https://www.777doc.com/doc-3566299 .html