您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 平行四边形的单元测试卷
第1页(共26页)平行四边形的单元测试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.55°B.65°C.75°D.85°2.(3分)若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22B.26C.22或26D.283.(3分)如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A.B.C.D.4.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.5.(3分)如图,一个正方形和两个等边三角形的位置如图所示,若∠2=50°,第2页(共26页)则∠1+∠3=()A.90°B.100°C.130°D.180°6.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直7.(3分)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°8.(3分)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC二.填空题(共8小题,满分24分,每小题3分)9.(3分)在菱形ABCD中,∠A=60°,AB=4,点P在菱形内,若PB=PD=4,则∠PDC的度数为.10.(3分)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.11.(3分)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.第3页(共26页)12.(3分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.13.(3分)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.14.(3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为.15.(3分)已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=.16.(3分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.第4页(共26页)三.解答题(共7小题,满分52分)17.(6分)如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.18.(6分)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.19.(8分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF.(1)求证:DE=AF;(2)求∠AOE的度数.20.(8分)如图,在▱ABCD中,对角线AC,BD交于点O,E为AB中点,点F在CB的延长线上,且EF∥BD.(1)求证;四边形OBFE是平行四边形;(2)当线段AD和BD之间满足什么条件时,四边形OBFE是矩形?并说明理由.第5页(共26页)21.(8分)如图,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:BD=AF;(2)判断四边形ADCF的形状,并证明你的结论.22.(8分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.23.(8分)已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.第6页(共26页)平行四边形的单元测试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2017•钦州一模)如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.55°B.65°C.75°D.85°【分析】如图,连接BF,想办法求出∠CBF=75°,再证明△BCF≌△DCF(SAS),即可解决问题.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,故选C.第7页(共26页)【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,解题的关键是学会用转化的思想思考问题,属于中考常考题型.2.(3分)(2017•临沂模拟)若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22B.26C.22或26D.28【分析】根据AD∥BC,理解平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=3cm,DE=5cm和AE=5cm,DE=3cm两种情况即可求得矩形的边长,从而求解.【解答】解:∵AD∥BC,∴∠AEB=∠EBC又∵BE平分∠ABC,即∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE.当AE=3cm,DE=5cm时,AD=BC=8cm,AB=CD=AE=3cm.∴矩形ABCD的周长是:2×8+2×3=22cm;当AE=3cm,DE=2cm时,AD=BC=8cm,AB=CD=AE=5cm,∴矩形ABCD的周长是:2×8+2×5=26cm.故矩形的周长是:22cm或26cm.故选C.【点评】此题考查了矩形的性质以及等腰三角形的判定与性质.此题难度适中,第8页(共26页)注意掌握数形结合思想与分类讨论思想的应用.3.(3分)(2017•平南县一模)如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A.B.C.D.【分析】连接EF,由矩形的性质得出AB=CD=3,AD=BC=2,∠A=∠D=90°,由勾股定理求出BE,由SAS证明△ABE≌△DCE,得出BE=CE=,再由△BCE的面积=△BEF的面积+△CEF的面积,即可得出结果.【解答】解:连接EF,如图所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∠A=∠D=90°,∵点E为AD中点,∴AE=DE=1,∴BE===,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE=,∵△BCE的面积=△BEF的面积+△CEF的面积,∴BC×AB=BE×FG+CE×FH,即BE(FG+FH)=BC×AB,即(FG+FH)=2×3,解得:FG+FH=;第9页(共26页)故选:D.【点评】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.4.(3分)(2017•和县一模)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.【分析】连接AC,易得△ACF是直角三角形,再根据直角三角形的性质即可得出结论.【解答】解:连接AC,∴四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC==2.∵AE=EF=AB+BE=2+1=3,∴AF==3,第10页(共26页)∴CF===.∵M为CF的中点,∴AM=CF=.故选D.【点评】本题考查的是正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.(3分)(2017春•句容市月考)如图,一个正方形和两个等边三角形的位置如图所示,若∠2=50°,则∠1+∠3=()A.90°B.100°C.130°D.180°【分析】根据三角形的外角和为360°列出方程即可解决问题.【解答】解:∵正方形的内角为90°,等边三角形的内角为60°,又∵△ABC的外角和为360°,∴(∠1+90°)+(∠2+60°)+(60°+∠3)=360°,∵∠2=50°,∴∠1+∠3=100°,故选B.【点评】本题考查正方形的性质、等边三角形的性质、三角形的外角和定理等知识,解题的关键是利用三角形外角和等于360°列出方程解决问题,属于中考常考题型.第11页(共26页)6.(3分)(2016•无锡)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.【点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.7.(3分)(2016•河池)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°【分析】首先根据平移的性质得出ACED,得出四边形ACDE为平行四边形,进而利用菱形的判定得出答案.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴ACED,∴四边形ACDE为平行四边形,当AC=BC时,则DE=EC,∴平行四边形ACED是菱形.第12页(共26页)故选:B.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出ABCD是解题关键.8.(3分)(2016•遵义)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC【分析】根据菱形的定义和判定定理即可作出判断.【解答】解:A、根据菱形的定义可得,当AB=AD时▱ABCD是菱形;B、根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD是菱形;C、对角线相等的平行四边形是矩形,不一定是菱形,命题错误;D、∠BAC=∠DAC时,∵▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形.∴∠BAC=∠DAC.故命题正确.故选C.【点评】本题考查了菱形的判定定理,正确记忆定义和判定定理是关键.二.填空题(共8小题,满分24分,每小题3分)9.(3分)(2017春•南岗区校级月考)在菱形ABCD中,∠A=60°,AB=4,点P在菱形内,若PB=PD=4,则∠PD
本文标题:平行四边形的单元测试卷
链接地址:https://www.777doc.com/doc-3576062 .html