您好,欢迎访问三七文档
创伤基础理论组织修复和创伤愈合组织修复(tissuerepair)是机体的一种重要的防御适应性反应,通过细胞再生、重建等过程,使损伤组织得以修复,使伤口、创面得以愈合,使破坏了的组织连续性得以恢复。但不良的愈合可使伤口、创面经久不愈,形成过度的瘢痕而引起不良后果。第一节组织修复的基本过程组织修复、创伤愈合,最基本的是有赖于组织细胞的再生增殖。细胞和组织损伤后,由周围存活的同种细胞进行增殖,以实现修复的过程,称为再生。一、细胞周期和不同类型细胞的再生潜能细胞周期与细胞再生能力G2期S期DNA合成期MG1期G0期终端分化在生理状态下,静止细胞处于G0期。不同种类的细胞,其细胞周期的时程长短不同,在单位时间里可进入细胞周期进行增殖的细胞数也不相同,因此具有不同的再生能力。各种组织有不同的再生能力,这是在动物长期进化过程中形成的。一般说来,低等动物组织的再生能力比高等动物强,分化低的幼稚组织比分化高的组织再生能力强,平常容易遭受损伤的组织以及在生理条件下经常更新的组织,有较强的再生能力。反之,则再生能力较弱或缺乏。除了主要由非分裂的持久细胞构成的组织外,多数成熟的组织都含有保持分裂能力的静止细胞,当其受到刺激时,可重新进入细胞周期。按再生能力的强弱,可将人体组织细胞分为三类。细胞周期与细胞再生能力连续分裂的细胞又称为周期性细胞不稳定细胞再生能力强休眠细胞又称G0期细胞稳定细胞。较强潜在再生能力终端分化细胞丧失分裂能力永久性细胞。没有再生能力⒈不稳定细胞这类细胞总在不断地增殖,以代替衰亡或破坏的细胞,如表皮细胞、呼吸道和消化道粘膜被覆细胞、男性及女性生殖器官管腔的被覆细胞、淋巴及造血细胞、间皮细胞等。这些细胞的再生能力相当强。⒉稳定细胞在生理情况下,这类细胞增殖现象不明显,似乎在细胞增殖周期中处于静止期(G0),但受到组织损伤的刺激时,则进入DNA合成前期(G1),表现出较强的再生能力。这类细胞包括各种腺体或腺样器官的实质细胞,如肝、胰、涎腺、内分泌腺、汗腺、皮脂腺和肾小管的上皮细胞等;还包括原始的间叶细胞及其分化出来的各种细胞。它们不仅有强的再生能力,而且原始间叶细胞还有很强的分化能力,可向许多特异的间叶细胞分化。例如骨折愈合时,间叶细胞增生,并向软骨母细胞及骨母细胞分化;平滑肌细胞也属于稳定细胞,但一般情况下其再生能力弱。⒊永久性细胞属于这类的细胞有神经细胞、骨骼肌细胞及心肌细胞。不论中枢神经细胞及周围神经的神经节细胞,在出生后都不能分裂增生,一旦遭受破坏则成为永久性缺失。但这不包括神经纤维,在神经细胞存活的前提下,受损的神经纤维有着活跃的再生能力。心肌和横纹肌细胞虽然有微弱的再生能力,但对于损伤后的修复几乎没有意义,基本上通过瘢痕修复。脏器损伤后主要依赖于实质细胞的再生增殖,同时间质成分对再生修复也起着很重要的作用。只有实质和间质协调再生,才能实现良好的修复。由于各种组织细胞的再生增殖能力不等,实质和间质的损伤程度、组织损伤的范围和性质不同,以及局部和全身状况不一,所以组织修复的方式也有所不同。修复过程可概括为两种不同的形式:①由损伤周围的同种细胞再生来完成修复,可完全或基本恢复原组织的结构及功能,则称为完全再生,主要见于损伤范围较小或再生能力较强的组织损伤的修复。②由肉芽组织填补组织损伤的缺损,以后转变为纤维结缔组织的方式来完成修复,称为称为不完全再生,也叫纤维性修复,以后形成瘢痕,故也称瘢痕修复,多见于损伤范围较大或再生能力较弱的组织损伤的修复。两种修复过程常同时存在。再生与分化的分子机制与再生有关的生长因子抑素与接触抑制细胞外基质抑素与接触抑制抑素—具有组织特异性,似乎任何组织都可以产生抑素以抑制本身的增殖。接触性抑制—在皮肤创伤、缺损部周围上皮细胞分裂增生迁移,将创面覆盖而相互接触时,或部分切除的肝脏增生达到原有大小时,细胞即停止生长,不致堆积起来。1.将生长抑制的信息从生长静止的细胞传给生长活跃的细胞,达到一定阈值时,后者停止生长。2.将生长刺激的信息从生长活跃的细胞传给邻近的细胞,使生长刺激信息分子在更大的细胞群体中分布,其浓度逐渐稀释,当水平低于阈值时,生长停止。缝隙连接(桥粒)可能参与接触抑制的调控:细胞外基质机体的组织由细胞与细胞外基质(extracellularmatrix)共同组成,组成细胞外基质的成分极其复杂、多样,其主要成分有:胶原蛋白—属于不溶性纤维蛋白质蛋白多糖—如透明质酸、硫酸软骨素、肝素、硫酸乙酰肝素,硫酸胶质素。粘连糖蛋白—纤维粘连蛋白(抑制上皮细胞增殖、促进成纤维细胞增殖);层粘连蛋白(抑制纤维细胞增殖、促进成上皮细胞增殖)。细胞外基质的作用体外实验表明,几乎所有的组织细胞在脱离了组织,处于悬浮状态时皆呈球形,且细胞表面有许多微绒毛及膜皱襞,这时,胞质中的细胞骨架呈解聚状态。脱离了基质的正常细胞很快停止于G1或G0期。实验证明,细胞只有粘着于适当的基质,才能保持正常形状,才能合成蛋白质及RNA;只有铺展状态下才能复制DNA。基质表面积与DNA的合成量之间存在正相关关系,当细胞铺展受到限制时,细胞增殖受到抑制。二、创伤愈合的基本过程1、炎症反应,溶解,清除坏死组织和渗出物;2、肉芽组织增生;3、新生结缔组织改造及基质沉积,瘢痕形成。创伤愈合的基本过程1伤口收缩肌纤维母细胞增生牵拉整层皮肤及皮下组织向中心移动伤口收缩创面缩小早期变化局部组织坏死,血管破裂出血充血水肿,炎性渗出凝块干燥为痂皮伤口缩小的程度与伤口部位、伤口大小、伤口形状有关创伤愈合的基本过程2肉芽组织瘢痕组织3天左右:肉芽组织从伤口底部及边缘长出毛细血管以0.1-0.6mm/天的速度延长5-6天:成纤维细胞产生大量胶原纤维7-12天:胶原纤维合成达高峰30天左右:瘢痕形成。表皮及其它组织增生凝块下伤口边缘基底细胞增生向中心移动单层上皮形成覆盖肉芽表面分化为鳞状上皮第二节伤口愈合1.一期愈合:见于组织缺损少、创缘整齐、无感染、经粘合或缝合后创面对合严密的伤口,例如手术切口。这种伤口中只有少量血凝块,炎症反应轻微,表皮再生在24~48小时内便可将伤口覆盖。肉芽组织在第三天就可从伤口边缘长出并很快将伤口填满,5~6天胶原纤维形成(此时可以拆线),约2~3周完全愈合,留下一条线状瘢痕。一期愈合的时间短,形成瘢痕少。1.创缘整齐,组织破坏少2.经缝合,创缘对合,炎症反应轻3.表皮再生,少量肉芽组织从伤口缘长入4.愈合后少量疤痕形成2.二期愈合:见于组织缺损较大、创缘不整、无法整齐对合,或伴有感染的伤口。这种伤口的愈合与一期愈合有以下不同:①由于坏死组织多,或由于感染,继续引起局部组织变性、坏死,炎症反应明显。只有等到感染被控制,坏死组织被清除以后,再生才能开始。②伤口大,伤口收缩明显,从伤口底部及边缘长出多量的肉芽组织将伤口填平。③愈合的时间较长,形成的瘢痕较大。1.创口大,创缘不整,组织破坏多2.伤口收缩,炎症反应重3.肉芽组织从伤口底部及边缘将伤口填平,然后表皮再生4.愈合后形成疤痕大3.痂下愈合:伤口表面的血液、渗出液及坏死物质干燥后形成黑褐色硬痂,在痂下进行上述愈合过程。待上皮再生完成后,痂皮即脱落。痂下愈合所需时间通常较无痂者长,因此时的表皮再生必须首先将痂皮溶解,然后才能向前生长。痂皮由于干燥不利于细菌生长,故对伤口有一定的保护作用。但如果痂下渗出物较多,尤其是已有细菌感染时,痂皮反而成了渗出物引流排出的障碍,使感染加重,不利于愈合。如前所述,伤口、创面愈合时除由肉芽瘢痕组织填补组织缺损外,很重要的是必须有上皮覆盖,没有上皮完全覆盖的伤口,创面总是没有完成愈合过程的。因此上皮细胞的功能状态和再生,对创伤愈合具有十分重要的意义。在伤口愈合中的上皮细胞活动包括细胞的移行、分裂和分化三个过程。复层扁平上皮受损后,其边缘和底部的基底层细胞受刺激而迅速分裂、增生,先形成单层上皮,向缺损处移动延伸。覆盖缺损后,上皮增生分化为复层鳞状上皮,恢复原有厚度。第三节成纤维细胞与胶原合成⒈伤口愈合中主要来源于真皮乳头纤维细胞及未分化的间叶细胞,以及血管周围的纤维细胞;⒉内脏损伤时来自间质和包膜,以及粘膜下或浆膜下层的结缔组织。一、成纤维细胞的来源功能:合成胶原,产生胶原纤维。胶原纤维的合成:前胶原→原胶原→微原纤维→原纤维→胶原纤维。胶原大致经历细胞内合成、细胞外沉积、被再吸收的动态过程。二、成纤维细胞的主要功能与胶原合成在胶原酶的作用下,在伤口愈合的某些时期,有些胶原被再吸收,这种变化可见于坏死组织清除时及愈合的纤维组织改造时。胶原还可被炎性细胞、新生的血管内皮细胞所溶解。三、胶原改造通过胶原合成和胶原降解吸收,机体对愈合中和愈合后的组织进行改造,使组织修复得以完成和完善,使胶原、胶原团块重组成为较有张力强度的、有收缩性能和一定弹性的瘢痕组织。愈合伤口的张力强度与胶原的合成、吸收和改造直接有关。伤口张力强度是指使伤口破裂所需的单位面积的力。胶原决定正常组织和伤口的张力强度,如真皮、肌腱、筋膜等含胶原甚多,强度最大,肝肾等实质脏器含胶原很少,张力强度也很小。伤后3-5日的早期伤口的张力很小,后因纤维增生而使张力强度迅速增加,持续约2周,其后的张力强度则增加缓慢,愈合伤口的胶愿聚积量与张力强度的增加呈平行关系。当胶原含量稳定以后相当时间内,张力强度仍继续增加,一般认为是由于已形成的胶原纤维和瘢痕组织经过改造的缘故。未经改造的瘢痕组织较脆弱,主要因为游离的原纤维没有适当地交织在一起形成胶原纤维;纤维尚未充分形成网状排列结构;胶原纤维不能按承力或张力方向调整、排列自己的方向;原纤维间的糖蛋白基质状况也影响胶原纤维的机械性质。胶原纤维的断裂不是各原纤维在同一平面上的断裂,而多因原纤维相互滑动而离散,原纤维间糖蛋白基质的粘合作用,可防止这种现象的发生。如将基质除去,胶原纤维的张力强度明显减低。张力强度还与原胶原分子的交链有关,如用山黧豆中毒动物,阻止新合成胶原的分子间和分子内的交链形成,则张力强度明显削弱以至丧失。第四节关于伤口收缩、瘢痕增生与疙瘩形成一、伤口收缩伤口愈合过程中发生伤口收缩,使伤口缩小,有利于修复的进行。这在二期愈合的伤口较为常见。收缩的程度与伤口周围皮肤的紧张度以及皮肤与其下组织间的疏松程度等有关。关于伤口收缩的原理与组织结构基础,在肉芽组织、肥厚的瘢痕组织和肺泡间隔等处,有一种肌成纤维细胞,其形态特点是:细长,多形核,胞浆缺乏细胞器,但充满收缩性肌朊细丝,即肌细丝,直径6~8nm,细丝伸展延及细胞的全长,胞浆内还散在着高电子密度的梭形凝聚体。有些细胞则充满着高度扩张的粗面内质网和无定形物质,有明显的高尔基体、游离核糖体、多聚核糖体及线粒体。许多肌成纤维细胞还见有离散而分叉的囊,其中含有肌动朊细丝,与细胞外的原纤维紧密靠近,邻近的肌成纤维细胞之间也有连接。认为通过这些“靠近”、“连接”,细胞收缩时引起愈合中组织的收缩。进一步研究发现肌成纤维细胞表面有“抛锚物质”,由其连接邻近的胶原纤维或其他细胞,当肌成纤维细胞收缩时,胶原纤维随之收缩。在一般伤口,肌成纤维细胞只在愈合早期存在于伤口,后来即为成纤维细胞所代替。至于肌成纤维细胞的来源,尚不很清楚,有人认为来自血管平滑肌细胞。但在伤口出现肌成纤维细胞和纤维增生以前,就见皮肤伤口发生收缩。小鼠全层皮肤圆形伤口实验,见伤后第1日伤口收缩平均14%,第2日收缩25%,第3日收缩39%。研究发现伤口边缘的上皮细胞参与了这种收缩。再生中的上皮细胞胞浆内有收缩性肌动朊微纤维网。当伤口愈合完成上皮覆盖后,上皮细胞内的肌动朊即不复可见。还见伤缘上皮细胞呈梭形,其长轴与圆形伤缘平行,胞浆中的微纤维与细胞长轴平行,当这些微纤维束收缩时,就形成向着伤口中央收缩的力。因此,现认为伤口收缩在伤后不同时期的发生机理可能不尽相同,最早的收缩是由于伤缘上皮细胞微纤维束收缩之故(“钱包收拢”效应);其次是位于伤缘后面的肌成纤维细胞发生收缩,如绘图框架的作用那样(“图架”效应);最后为位于伤口中央的肌成纤维细胞发生收缩,即“牵拉”效应。二、瘢痕增生与疙瘩形成在一些伤口、创面愈合时或愈合后,瘢痕组织明显增生、肥厚,有些形
本文标题:组织修复和创伤愈合
链接地址:https://www.777doc.com/doc-3590733 .html