您好,欢迎访问三七文档
小学奥数问题详解1.利润问题2.浓度问题3.工程问题工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种工程习惯,这一类问题称之为工程问题。11.解题关键是把一项工程看成一个单位,运用公式:工作效率×工作时间=工作总量,表示出各个工程队(人员)或其组合在统一标准和单位下的工作效率。2.利用常见的数学思想方法,如代换法、比例法、列表法、方程法等。抛开工作总量,和时间,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后利用先前的假设把整个工程看成一个单位,求得问题答案,一般情况下,工程问题求的是时间。有的情况下,工程问题并不表现为两个工程队在修路筑桥、开挖河渠,甚至会表现为行程问题、经济价格问题等等,工程问题不仅指一种题型,更是一种解题方法。4.假设问题鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法--假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数5.盈亏问题按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.一般地,一批物品分给一定数量的人,第一种分配方法有多余的物品(盈),第二种分配方法则不足(亏),当两种分配方法相差n个物品时,那就有:盈数+亏数=人数×n,这是关于盈亏问题很重要的一个关系式.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数,2(盈-盈)÷两次分得之差=人数或单位数,(亏-亏)÷两次分得之差=人数或单位数.解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下亏,亏多少?找到盈亏的根源和几次盈亏结果不同的原因.另外在解题后,应进行验算.6.还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.7.方阵问题在方阵问题中,横的排叫做行,竖的排叫做列,如果行数和列数都相等,则正好排成一个正方形,就是所谓的方阵。方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2,每层总数就少8.②每边人(或物)数和每层总数的关系:每层总数=[每边人(或物)数1]×4;每边人(或物)数=每层总数÷4+1.③实心方阵:总人(或物)数=每边人(或物)数×每边人(或物)数.38.植树问题(一)不封闭型(直线)植树问题1、直线两端植树:棵数=段数+1=全长÷株距+1;全长=株距×(棵数-1);株距=全长÷(棵数-1);2、直线一端植树:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数;3、直线两端都不植树:棵数=段数-1=全长÷株距-1;株距=全长÷(棵数+1);(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数×棵距;棵距=总距离÷棵数.9.年龄问题年龄问题的三大规律:1.两人的年龄差是不变的;2.两人年龄的倍数关系是变化的量;3.随着时间的推移,两人的年龄都是增加相等的量.4解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差.10.牛吃草问题5
本文标题:小学奥数问题分析
链接地址:https://www.777doc.com/doc-3593201 .html