您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 直调资料--电力拖动自动控制系统第四章课件
可逆调速系统和位置随动系统电力拖动自动控制系统第4章本章在前三章的基础上进一步探讨可逆调速系统和位置随动系统。考虑到大多数学校教学学时的限制和电气工程及其自动化专业的一般教学需求,本课件选择可逆调速系统为主要内容。4.1可逆直流调速系统内容提要问题的提出晶闸管-电动机系统的可逆线路晶闸管-电动机系统的回馈制动两组晶闸管可逆线路中的环流有环流可逆调速系统无环流可逆调速系统4.1.0问题的提出有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。4.1.0问题的提出(续)改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向,这本来是很简单的事。然而当电机采用电力电子装置供电时,由于电力电子器件的单向导电性,问题就变得复杂起来了,需要专用的可逆电力电子装置和自动控制系统。4.1.1单片微机控制的PWM可逆直流调速系统中、小功率的可逆直流调速系统多采用由电力电子功率开关器件组成的桥式可逆PWM变换器,如本书第1.3.1节中第2小节所述。第1.3.4节图1-22绘出了PWM可逆调速系统的主电路,其中功率开关器件采用IGBT,在小容量系统中则可用将IGBT、续流二极管、驱动电路以及过流、欠压保护等封装在一起的智能功率模块—IPM。•系统组成图4-1PWM可逆直流调速系统原理图系统组成(续)图中UR—整流器;UPEM—桥式可逆电力电子变换器,主电路与图1-22相同,须要注意的是,直流变换器必须是可逆的;GD—驱动电路模块,内部含有光电隔离电路和开关放大电路;系统组成(续)UPW—PWM波生成环节,其算法包含在单片微机软件中;TG—为测速发电机,当调速精度要求较高时可采用数字测速码盘;TA—霍尔电流传感器;给定量n*,I*d和反馈量n,Id都已经是数字量。•系统控制该原理图的硬件结构如图3-4所示,控制系统一般采用转速、电流双闭环控制,电流环为内环,转速环为外环,内环的采样周期小于外环的采样周期。无论是电流采样值还是转速采样值都有交流分量,常采用阻容电路滤波,但阻容值太大时会延缓动态响应,为此可采用硬件滤波与软件滤波相结合的办法。系统控制(续)当转速给定信号在-n*max~0~+n*max之间变化并达到稳态后,由微机输出的PWM信号占空比ρ在0~½~0的范围内变化,使UPEM的输出平均电压系数为=–1~0~+1[参看式(1-20)],实现双极式可逆控制。在变流中,为了避免同一桥臂上、下两个电力电子器件同时导通而引起直流电源短路,在由VT1、VT4导通切换到VT2、VT3导通或反向切换时,必须留有死区时间。对于功率晶体管,死区时间约需30µs;对于IGBT,死区时间约需5µs或更小些。4.1.2有环流控制的可逆晶闸管-电动机系统一.V-M系统的可逆线路根据电机理论,改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向。因此,V-M系统的可逆线路有两种方式:电枢反接可逆线路;励磁反接可逆线路。1.电枢反接可逆线路电枢反接可逆线路的形式有多种,这里介绍如下3种方式:(1)接触器开关切换的可逆线路(2)晶闸管开关切换的可逆线路(3)两组晶闸管装置反并联可逆线路(1)接触器开关切换的可逆线路•KMF闭合,电动机正转;•KMR闭合,电动机反转。M~V+-UdKMFKMFKMRKMRUd+Id–IdM(2)晶闸管开关切换的可逆线路•VT1、VT4导通,电动机正转;•VT2、VT3导通,电动机反转。M~V+-UdVT1VT4VT2VT3晶闸管开关切换的可逆线路Ud–IdMVT1VT2VT3VT4+Id•接触器切换可逆线路的特点优点:仅需一组晶闸管装置,简单、经济。缺点:有触点切换,开关寿命短;需自由停车后才能反向,时间长。应用:不经常正反转的生产机械。(3)两组晶闸管装置反并联可逆线路较大功率的可逆直流调速系统多采用晶闸管-电动机系统。由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,如下图所示。Idb)运行范围图4-2两组晶闸管可控整流装置反并联可逆线路两组晶闸管装置反并联可逆供电方式-n-IdnO正向反向a)电路结构MVRVFId-Id+--+--两组晶闸管装置可逆运行模式电动机正转时,由正组晶闸管装置VF供电;反转时,由反组晶闸管装置VR供电。两组晶闸管分别由两套触发装置控制,都能灵活地控制电动机的起、制动和升、降速。但是,不允许让两组晶闸管同时处于整流状态,否则将造成电源短路,因此对控制电路提出了严格的要求。2.励磁反接可逆线路改变励磁电流的方向也能使电动机改变转向。与电枢反接可逆线路一样,可以采用接触器开关或晶闸管开关切换方式,也可采用两组晶闸管反并联供电方式来改变励磁方向。励磁反接可逆线路见下图,电动机电枢用一组晶闸管装置供电,励磁绕组由另外的两组晶闸管装置供电。励磁反接可逆供电方式晶闸管反并联励磁反接可逆线路MVId+-VRVFId-Id+--+--励磁反接的特点优点:供电装置功率小。由于励磁功率仅占电动机额定功率的1~5%,因此,采用励磁反接方案,所需晶闸管装置的容量小、投资少、效益高。缺点:改变转向时间长。由于励磁绕组的电感大,励磁反向的过程较慢;又因电动机不允许在失磁的情况下运行,因此系统控制相对复杂一些。小结(1)V-M系统的可逆线路可分为两大类:电枢反接可逆线路——电枢反接反向过程快,但需要较大容量的晶闸管装置;励磁反接可逆线路——励磁反接反向过程慢,控制相对复杂,但所需晶闸管装置容量小。(2)每一类线路又可用不同的换向方式:接触器切换线路——适用于不经常正反转的生产机械;晶闸管开关切换线路——适用于中、小功率的可逆系统;两组晶闸管反并联线路——适用于各种可逆系统。二.晶闸管-电动机系统的回馈制动1.晶闸管装置的整流和逆变状态在两组晶闸管反并联线路的V-M系统中,晶闸管装置可以工作在整流或有源逆变状态。在电流连续的条件下,晶闸管装置的平均理想空载输出电压为(4-1)coscosmπsinπmd0maxmd0UUU当控制角为90°,晶闸管装置处于整流状态;当控制角为90°,晶闸管装置处于逆变状态。因此在整流状态中,Ud0为正值;在逆变状态中,Ud0为负值。为了方便起见,定义逆变角=180–,则逆变电压公式可改写为Ud0=-Ud0maxcos(4-2)逆变电压公式-+Ud0RM+-nEV--2.单组晶闸管装置的有源逆变单组晶闸管装置供电的V-M系统在拖动起重机类型的负载时也可能出现整流和有源逆变状态。a)整流状态:提升重物,90°,Ud0E,n0由电网向电动机提供能量。PId+-+--Ud0RMnEV--b)逆变状态:放下重物90°,Ud0E,n0由电动机向电网回馈能量。PIdn-nIdTe提升放下c)机械特性整流状态:电动机工作于第1象限;逆变状态:电动机工作于第4象限。TL图4-3单组V-M系统带起重机类型负载时的整流和逆变状态3.两组晶闸管装置反并联的整流和逆变两组晶闸管装置反并联可逆线路的整流和逆变状态原理与此相同,只是出现逆变状态的具体条件不一样。现以正组晶闸管装置整流和反组晶闸管装置逆变为例,说明两组晶闸管装置反并联可逆线路的工作原理。图4-4两组晶闸管反并联可逆V-M系统的正组整流和反组逆变状态R-+Ud0fM+-nEVF--a)正组整流电动运行a)正组晶闸管装置VF整流VF处于整流状态:此时,f90°,Ud0fE,n0电机从电路输入能量作电动运行。PIdb)反组晶闸管装置VR逆变当电动机需要回馈制动时,由于电机反电动势的极性未变,要回馈电能必须产生反向电流,而反向电流是不可能通过VF流通的。这时,可以利用控制电路切换到反组晶闸管装置VR,并使它工作在逆变状态。b)两组晶闸管反并联可逆V-M系统的反组逆变状态+-+--Ud0rRMnEVR--VR逆变处于状态:此时,r90°,E|Ud0r|,n0电机输出电能实现回馈制动。PIdc)机械特性范围Id-Idn反组逆变回馈制动正组整流电动运动c)机械特性运行范围整流状态:V-M系统工作在第一象限。逆变状态:V-M系统工作在第二象限。4.V-M系统的四象限运行在可逆调速系统中,正转运行时可利用反组晶闸管实现回馈制动,反转运行时同样可以利用正组晶闸管实现回馈制动。这样,采用两组晶闸管装置的反并联,就可实现电动机的四象限运行。归纳起来,可将可逆线路正反转时晶闸管装置和电机的工作状态列于表4-1中。表4-1V-M系统反并联可逆线路的工作状态V-M系统的工作状态正向运行正向制动反向运行反向制动电枢端电压极性++--电枢电流极性+--+电机旋转方向++--电机运行状态电动回馈发电电动回馈发电晶闸管工作的组别和状态正组整流反组逆变反组整流正组逆变机械特性所在象限一二三四反并联的晶闸管装置的其他应用即使是不可逆的调速系统,只要是需要快速的回馈制动,常常也采用两组反并联的晶闸管装置,由正组提供电动运行所需的整流供电,反组只提供逆变制动。这时,两组晶闸管装置的容量大小可以不同,反组只在短时间内给电动机提供制动电流,并不提供稳态运行的电流,实际采用的容量可以小一些。三.可逆V-M系统中的环流问题1.环流及其种类环流的定义:采用两组晶闸管反并联的可逆V-M系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流,如下图中所示。图4-5反并联可逆V-M系统中的环流MVRVFUd0f+--+Ud0rRrecRrecRa--~~环流的形成IdIcIc—环流Id—负载电流环流的危害和利用危害:一般地说,这样的环流对负载无益,徒然加重晶闸管和变压器的负担,消耗功率,环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。利用:只要合理的对环流进行控制,保证晶闸管的安全工作,可以利用环流作为流过晶闸管的基本负载电流,使电动机在空载或轻载时可工作在晶闸管装置的电流连续区,以避免电流断续引起的非线性对系统性能的影响。环流的分类在不同情况下,会出现下列不同性质的环流:(1)静态环流——两组可逆线路在一定控制角下稳定工作时出现的环流,其中又有两类:直流平均环流——由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流。瞬时脉动环流——两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。环流的分类(续)(2)动态环流——仅在可逆V-M系统处于过渡过程中出现的环流。这里,主要分析静态环流的形成原因,并讨论其控制方法和抑制措施。2.直流平均环流与配合控制在两组晶闸管反并联的可逆V-M系统中,如果让正组VF和反组VR都处于整流状态,两组的直流平均电压正负相连,必然产生较大的直流平均环流。为了防止直流平均环流的产生,需要采取必要的措施,比如:采用封锁触发脉冲的方法,在任何时候,只允许一组晶闸管装置工作;采用配合控制的策略,使一组晶闸管装置工作在整流状态,另一组则工作在逆变状态。(1)配合控制原理为了防止产生直流平均环流,应该当正组处于整流状态时,强迫让反组处于逆变状态,且控制其幅值与之相等,用逆变电压把整流电压顶住,则直流平均环流为零。于是Ud0r=-Ud0f由式(4-1),Ud0f=Ud0maxcosfUd0f=Ud0maxcosr其中f和r分别为VF和VR的控制角。由于两组晶闸管装置相同,两组的最大输出电压Ud0max是一样的,因此,当直流平均环流为零时,应有cosr=–cosf或r+f=180(4-3)如果反组的控制用逆变角r表示,则f=r(4-4)由此可见,按照式(4-4)来控制就可以消除直流平均环流,这称作=配合控制。为了更可靠地消除直流平均环流,可采用f≥r(4-5)(2)配合控制方法为了实现配合控制,可将两组晶闸管装置的触发脉冲零位都定在90°,即当控制电
本文标题:直调资料--电力拖动自动控制系统第四章课件
链接地址:https://www.777doc.com/doc-3605485 .html