您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第十章相交线与平行线复习课课件
沪科版第十章相交线与平行线的复习相交线两条直线相交两条直线被第三条所截一般情况邻补角对顶角邻补角互补对顶角相等特殊垂直存在性和唯一性垂线段最短点到直线的距离同位角、内错角、同旁内角平行线平行公理及其推论平行线的判定平行线的性质两条平行线的距离平移平移的特征知识构图12与是邻补角。2.对顶角:(1)两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角是对顶角。如图(2).12,34与与是对顶角。(2)一个角的两边分别是另一个角的两边的反向延长线,这两个角是对顶角。12(1)(2)12341.互为邻补角:两条直线相交所构成的四了角中,有公共顶点且有一条公共边的两个角是邻补角.如图(1)5.n条直线相交于一点,就有n(n-1)对对顶角。两个特征:(1)具有公共顶点;(2)角的两边互为反向延长线。4.对顶角性质:对顶角相等。132312(与互补,与互补同角的补角相等)3.邻补角的性质:同角的补角相等。1.:2:3ABCDOAOCAODBOD例直线与相交于,求的度数。ABCDO在解决与角的计算有关的问题时,经常用到代数方法。解:设∠AOC=2x°,则∠AOD=3x°所以2x°+3x°=180°因为∠AOC+∠AOD=180°解得x=36°所以∠AOC=2x=72°∠BOD=∠AOC=72°答:∠BOD的度数是72°009036DOEAOE,BOEBOC求、的度数。OABCDEF例2.已知直线AB、CD、EF相交于点O,解:因为直线AB与EF相交与点O所以∠AOE+∠BOE=180°因为∠AOE=36°所以∠BOE=180°-∠AOE=180°-36°=144°因为∠DOE=90°所以∠AOD=∠AOE+∠DOE=126°又因为∠BOC与∠AOD是对顶角所以∠BOC=∠AOD=126°1.垂线的定义:两条直线相交,所构成的四个角中,有一个角是90°时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线。它们的交点叫垂足。2.垂线的性质:(1)过一点有且只有一条直线与已知直线垂直。(2):直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。3.点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。垂线5.垂线是直线,垂线段特指一条线段,点到直线距离是指垂线段的长度,是指一个数量,是有单位的。4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与直线垂直时,特指它们所在的直线互相垂直。1.5ABCDOOEABODOECOEAOD例直线、相交于点,,垂足为,且。求的度数。┓ABCDOE0000:551803090120DOECOECOECOECOEOEABBOEBOCBOECOE00解由邻补角的定义知:COE+DOE=180,又由又由对顶角相等得:AOD=BOC=120此题需要正确地应用、对顶角、邻补角、垂直的概念和性质。2.:32:13OAOCOBODAOBBOCCOD例已知,,,求的度数。OADCB000000000.:9090:32:133221322690902664OAOCAOCAOBBOCAOBBOCAOBxxBOCOBODBODCOD0解由知即由,设,则BOC=13x列方程:32x+13x=90又由垂直先找到90°的角,再根据角之间的关系求解。C理由:垂线段最短例3:如图,要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟的长度才能最短?请画出图来,并说明理由。ADCBEF例4:你能量出C到AB的距离,B到AC的距离,A到BC的距离吗?思考:三角形的三条垂线有什么特点?三角形的三条垂线都交于一点;锐角三角形的三条垂线交点在三角形的内部;直角三角形的三条垂线交点在直角顶点;钝角三角形的三条垂线交点在三角形的外部;例5:你能画出ABC三点到对边的垂线吗?1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线。2.两直线的位置关系:在同一平面内,两直线的位置关系只有两种:(1)相交;(2)平行。3.平行线的基本性质:(1)平行公理(平行线的存在性和唯一性)经过直线外一点,有且只有一条直线与已知直线平行。(2)推论(平行线的传递性)如果两条直线都和第三条直线平行,那么这两条直线也互相平行。平行同位角、内错角、同旁内角,指的是一条直线分别与两条直线相交构成的八个角中,不共顶点的角之间的特殊位置关系。它们与对顶角、邻补角一样,总是成对存在着的。4.同位角、内错角、同旁内角的概念1、同位角的位置特征是:2、内错角的位置特征是:3、同旁内角的位置特征是:(1)在截线的同旁,(2)在被截两直线的同方向。(1)在截线的两旁,(2)在被截两直线之间。(1)在截线的同旁,(2)在被截两直线之间。F1375286DCABE4被截线截线三线八角(1)定义法;在同一平面内不相交的两条直线是平行线。(2)传递法;两条直线都和第三条直线平行,这两条直线也平行。(3)因为a⊥c,a⊥b;所以b//cabC判定两直线平行的方法有三种:在这六种方法中,定义一般不常用。同旁内角互补,两直线平行。内错角相等,两直线平行。同位角相等,两直线平行。(4)三种角判定(3种方法):FABCDE1234∠1和∠2不是同位角,如图中的∠1和∠2是同位角吗?为什么?1212∵∠1和∠2无一边共线。∠1和∠2是同位角,∵∠1和∠2有一边共线、同向且不共顶点。练一练ACBDE12答:∠EAC答:∠DAB答:∠BAC,∠BAE,∠2∠1与哪个角是同旁内角?∠2与哪个角是内错角?例1.∠1与哪个角是内错角?证明:∵∠DAC=∠ACB(已知)ABCDEF∴AD//BC(内错角相等,两直线平行)∵∠D+∠DFE=180°(已知)∴AD//EF(同旁内角互补,两直线平行)∴EF//BC(平行于同一条直线的两条直线互相平行)例2.已知∠DAC=∠ACB,∠D+∠DFE=1800,求证:EF//BC平行线的判定两直线平行条件结论同位角相等内错角相等同旁内角互补条件同位角相等内错角相等同旁内角互补结论两直线平行夹在两平行线间的垂线段的长度,叫做两平行线间的距离。平行线的性质证明:由:∠1+∠2=180°(已知)4123ABCEFD(同旁内角互补,两直线平行)∠1=∠3(对顶角相等)∠2=∠4(对顶角相等)所以∠3+∠4=180°(等量代换)AB//CD.例1.如图已知:∠1+∠2=180°,求证:AB∥CD。证明:∵由AC∥DE(已知)ADBE12C∴∠ACD=∠2(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴AB∥CD(内错角相等,两直线平行)例2.如图,已知:AC∥DE,∠1=∠2,试证明AB∥CD。ABCDFGE∵EF⊥AB,CD⊥AB(已知)∴AD∥BC(垂直于同一条直线的两条直线互相平行)∴∠EFB=∠DCB(两直线平行,同位角相等)∵∠EFB=∠GDC(已知)∴∠DCB=∠GDC(等量代换)∴DG∥BC(内错角相等,两直线平行)∴∠AGD=∠ACB(两直线平行,同位角相等)证明:例3.已知EF⊥AB,CD⊥AB,∠EFB=∠GDC,求证:∠AGD=∠ACB。如图,两平面镜а、β的夹角为θ,入射光线AO平行于β入射到а上,经两次反射后的反射光线O'B平行于а,且∠1=∠2,∠3=∠4,则角θ=_____度аβθO'OBA12345060例4.两块平面镜的夹角应为多少度?分析:由题意有OA//β,O'B∥a且∠1=∠2,∠3=∠4,由OA//β,∠1=∠θO'B∥a,∠4=∠θ,∠2=∠5所以∠3=∠4=∠5=∠θ因为∠3+∠4+∠5=180°所以∠3=60°即θ=60°1.平移变换的定义:把一个图形整体沿某一方向移动,会得到一个新图形,这样的图形运动,叫做平移变换,简称平移。2.平移的特征:(1)平移不改变图形的形状和大小。(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,对应点连结而成的线段平行且相等。3.对应点所连的线段平行且相等。平移3.决定平移的因素是平移的方向和距离。4.经过平移,图形上的每一点都沿同一方向移动相同的距离。5.经过平移,对应角相等;对应线段平行且相等;平移A.站在运动着的电梯上的人B.左右推动的推拉窗扇C.小李荡秋千运动D.躺在火车上睡觉的旅客分析:A、B、D属平移,在一个位置取两点连成一条线,在另一个位置再观察这条线段,发现是平行的,而C同样取两点连成一条线段,运动到另一位置时,可能已不平行解:选C例1.在以下生活现象中,不是平移现象的是小结:1、邻补角、对顶角的概念和性质2、垂线画法、垂线段的性质3、平行线的判定和性质4、平移的概念和平移的性质祝同学们学习进步
本文标题:第十章相交线与平行线复习课课件
链接地址:https://www.777doc.com/doc-3626724 .html