您好,欢迎访问三七文档
第八章立体几何专题1空间几何体【三年高考】1.【2017江苏】如图,在圆柱12OO内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12OO的体积为1V,球O的体积为2V,则12VV的值是▲.2.【2014江苏,理8】设甲,乙两个圆柱的底面面积分别为12,SS,体积为12,VV,若它们的侧面积相等且1294SS,则12VV的值是.3.【2013江苏,理8】如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=__________.4.【2012江苏,理7】如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A-BB1D1D的体积为__________cm3.5.【2017课标3,理8】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π46.【2017天津,理10】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.7.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.8.【2016高考新课标3理数改编】在封闭的直三棱柱111ABCABC内有一个体积为V的球,若ABBC,6AB,8BC,13AA,则V的最大值是.9.【2016高考上海理数】如图,在正四棱柱1111DCBAABCD中,底面ABCD的边长为3,1BD与底面所成角的正切值为23,则该正四棱柱的高等于____________.10.【2016高考新课标1卷改编】如图,某几何体是一个球被切掉左上角的18,.若该几何体的体积是283,则它的表面积是.11.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有___________________斛.12.【2015高考安徽,文19】如图,三棱锥P-ABC中,PA平面ABC,1,1,2,60PAABACBACo.(Ⅰ)求三棱锥P-ABC的体积;(Ⅱ)证明:在线段PC上存在点M,使得ACBM,并求PMMC的值.【2018年高考命题预测】纵观2017各地高考试题,对简单几何体的考查,主要考查简单几何体的概念、求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题.即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解.从高考试题来看,球的组合体问题是高考必考内容之一,每年都涉及,试题难度在中等,有时在压轴题的位置,从整体上来看,试题难度理科比文科要大,主要考查学生的画图能力,空间想象能力,运算能力及逻辑推理能力,预测2017年高考题中,理科仍然以球的组合体为主,文科也会与组合体有关,考查组合体的体积与表面积有关的问题.从高考试题来看,空间几何体的表面积、体积等问题是高考的热点,题型既有填空题,又有解答题,难度为中、低档.客观题主要考查表面积、体积或由几何体的表面积、体积得出某些量;主观题考查较全面,考查线、面位置关系,及表面积、体积公式,无论是何种题型都考查学生的空间想象能力.预测2018年高考仍将以空间几何体的面积、体积为主要考查点,重点考查学生的空间想象能力、运算能力及逻辑推理能力.复习建议:与几何体的侧面积和体积有关的计算问题,根据基本概念和公式来计算,要重视方程的思想和割补法、等积转换法的运用【2018年高考考点定位】高考对空间几何体的考查,主要考查简单几何体的概念、求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题.即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,以选择、填空题的形式考查,有时也会在解答题中出现.【考点1】空间几何体【备考知识梳理】1.柱、锥、台、球的结构特征(1)柱:棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.棱柱与圆柱统称为柱体;(2)锥:棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面.棱锥与圆锥统称为锥体(3)台:棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点.圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴圆台和棱台统称为台体.(4)球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.(5)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(6)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.2.几种常凸多面体间的关系3.一些特殊棱柱、棱锥、棱台的概念和主要性质名称棱柱直棱柱正棱柱图形定义有两个面互相平侧棱垂直于底面底面是正多边形的行,而其余每相邻两个面的交线都互相平行的多面体的棱柱直棱柱侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面的形状平行四边形矩形矩形平行于底面的截面的形状与底面全等的多边形与底面全等的多边形与底面全等的正多边形名称棱锥正棱锥棱台正棱台图形定义有一个面是多边形,其余各面是有一个公共顶点的三角形的多面体底面是正多边形,且顶点在底面的射影是底面的射影是底面和截面之间的部分用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分由正棱锥截得的棱台侧棱相交于一点但不一定相等相交于一点且相等延长线交于一点相等且延长线交于一点侧面的形状三角形全等的等腰三角形梯形全等的等腰梯形对角面的形状三角形等腰三角形梯形等腰梯形平行于底的截与底面相似的多边形与底面相似的正多边形与底面相似的多边形与底面相似的正多边形面形状其他性质高过底面中心;侧棱与底面、侧面与底面、相邻两侧面所成角都相等两底中心连线即高;侧棱与底面、侧面与底面、相邻两侧面所成角都相等几种特殊四棱柱的特殊性质名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分【规律方法技巧】1.注意特殊的四棱柱的区别:直四棱柱、正四棱柱、长方体、正方体、平行六面体、直平行六面体.2.棱台的各侧棱延长线交于一点是判断棱台的主要依据,两底面平行且是相似多边形.3.注意还台为锥的解题方法的运用,将台体还原为锥体可利用锥体的性质.注意正棱锥中的四个直角三角形为:高、斜高及底面边心距组成一个直角三角形;高、侧棱与底面外接圆半径组成一个直角三角形;底面的边心距、外接圆半径及半边长组成一个直角三角形;侧棱、斜高及底边一半组成一个直角三角形.4.将几何体展开为平面图形时,要注意在何处剪开,多面体要选择一条棱剪开,旋转体要沿一条母线剪开.5.常见的特殊几何体的性质(1)平行六面体:①底面是平行四边形的四棱柱.②{平行六面体}{直平行六面体}{长方体}{正四棱柱}{正方体};③平行六面体的任何一个面都可以作为底面;④平行六面体的对角线交于一点,并且在交点处互相平分;⑤平行六面体的四条对角线的平方和等于各棱的平方和.(2)长方体:①长方体的一条对角线的平方等于一个顶点上三条棱长的平方和;②若长方体的体对角线与过同一顶点的三条棱所成的角分别为,,,则cos2+cos2+cos2=1;③若长方体的体对角线与过同一顶点的三侧面所成的角分别为,,,则cos2+cos2+cos2=2.(3)正棱锥:如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥.①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫侧高)也相等;②正棱锥的高h、斜高h、斜高在底面的射影(底面的内切圆的半径r)、侧棱、侧棱在底面的射影(底面的外接圆的半径R)、底面的半边长可组成四个直角三角形;③若正棱锥的侧面与底面所成的角为,则cosSS侧底=.(4)正四面体:侧棱与底面边长相等的正三棱锥叫做正四面体.①设正四面体的棱长为a,则高为63a,斜高32a为,对棱间的距离为22a,体积为3212a.②正四面体与其截面:如图所示点E为PA的中点,连接EB和EC.点F为BC中点,连接EF.则截面EBC⊥PA,EBC⊥面PAB,EBC⊥面PAC.EF为相对棱的公垂线,其长度为相对棱的距离;③正四面体可补形为正方体,如图所示,四面体B-ACD即为正四面体.各个棱为正方体的面对角线.正方体的棱长是正四面体棱长的22.利用这个补形为解题带来很大的方便.6.几何体中计算问题的方法与技巧:①在正棱锥中,正棱锥的高、侧面等腰三角形的斜高与侧棱构成两个直角三角形,有关计算往往与两者相关;②正四棱台中要掌握对角面与侧面两个等腰梯形中关于上底、下底及梯形高的计算,另外,要能将正三棱台、正四棱台的高与其斜高,侧棱在合适的平面图形中联系起来;③研究圆柱、圆锥、圆台等问题,主要方法是研究其轴截面,各元素之间的关系,数量都可以在轴截面中得到;④多面体及旋转体的侧面展开图是将立体几何问题转化为平面几何问题处理的重要手段.【考点针对训练】1.在体积为32的四面体ABCD中,AB平面ABCD,1AB,2BC,3BD,则CD长度的所有值为▲.2
本文标题:专题8.1 空间几何体-3年高考2年模拟1年原创备战2018高考精品系列之数学(江苏版)(原卷版)
链接地址:https://www.777doc.com/doc-3630932 .html