您好,欢迎访问三七文档
流体力学基础知识具有流动性的介质,如水、空气、蒸汽等。这些液体和气体统称流体。流体的基本特性就是流动性。在学习具体内容之前,需了解有关流体的基本知识。第一节流体的主要物理性质一、流体的惯性、密度和容重1.惯性(1)定义:反抗改变其原有运动状态的特性。or:保持其原有运动状态的特性。(2)质量越大,惯性越大。2.密度(1)定义:单位体积的质量。(2)公式:V其中ρ——㎏/m3;M——㎏;V——m3。其中ΔM——微小体积ΔV的流体质量;ΔV——包含该点在内的流体体积。3.容重(1)定义:单位体积的重量。(2)公式:VMV0limVG=对非均质流体,其中——N/m3,G——N,V——m34.ρ与γ的关系:液体的ρ和γ随外界压力和温度有一定变化,但变化值不大,一般视为固定值;气体的ρ和γ随温度、压强的变化较大。水从0℃升至30℃,密度减小0.4%,温度较低时(10~20℃),每升高1℃,密度减小0.15‰;温度较高时(90~100℃),每升高1℃,密度减小0.7‰。压强每升高一个大气压,水的密度增加约1/10000。所以,水的热膨胀型、压缩性很小。但在热水供应中应考虑水的膨胀体积。常用:ρ水=1000㎏/m3(4℃);γ水=9800N/m3;ρ空气=1.2㎏/m3(20℃)。ggVMVGMgG,,二、流体的粘滞性1.定义:流体质点间或流层间因相对运而产生内摩擦力以反抗相对运动的性质。此内摩擦力称为粘滞力。2.粘滞系数:动力粘滞系数µ(Pa.s),运动粘滞系数ν(m2/s)。不同流体µ、ν不同,温度较压力对其影响更大。3.温度与粘滞性粘滞性是分子之间的吸引力与分子不规则热运动引起的动量交换的结果。温度升高,分子之间的吸引力降低,动量增大;反之,温度降低,分子之间的吸引力增大,动量减小。对液体,分子之间的吸引力是决定性因素,所以液体的粘滞性随温度升高而减小;对于气体,分子之间的热运动产生动量交换是决定性因素,所以,气体的粘滞性随温度升高而增大。三、流体的压缩性和膨胀性1.压缩性:T不变时,P增大,V随之减小的性质。2.膨胀性:P不变,T升高时,V增大的性质。3.液体的压缩性和膨胀性均很小,气体则较明显,但通常均视流体为不可压缩、连续的理想流体。(连续介质、无粘性流体、不可压缩流体)第二节流体静力学基础流体不能受拉力、剪切力,但能承受较大的压力,便于流动。适于管道输送,常用作制冷、供热的介质。一、流体静压力及其基本方程式1.流体静压力:由处于静止或相对静止的均质流体施加的力。Or:作用在整个物体表面积上的称为流体静压力,而作用在单位面积上的流体静压力称为流体静压强。一水箱,任取一截面,上部分作用其上的力为ΔP,面积为ΔA,则ΔA上的平均流体静压强当ΔA缩小→a点时,比值趋于某一极限值,称为a点的流体静压强:p•若P为常数,则0limpPp2.流体静压强的特性流体静压力、静压强都是压力的一种量度,其区别在于:前者是作用在某一面积上的总压力,后者是作用在某一面积上的平均压力或某一点的压力。(1)其方向垂直于作用面并指向作用面;否则,就有一个平行于作用面的切向分力,使流体失去静止状态。(2)任意点各方向上的流体静压强相等;任意点的流体静压强的大小与作用面方向无关,只与该点的位置有关。3.流体静压强的分布规律取静止流体中的一与轴线垂直的圆柱体作隔离体hG12211221121)()(水平方向无重力前后左右各方向的水平力处于平衡状态,合力为0。取斜圆柱体亦可。沿轴线方向外力平衡。圆柱体端面是任取的,所以该公式为普遍关系式。其中,p0——液面压强;p——液体内部某点的压强;——容重;h——深度。它表示静止液体中,压强随深度按直线变化的规律。任一点的压强由p0和h两部分组成。压强的大小与容器的形状无关。hpp0液面下任一点的压强规律:1.深度相同,压强相同。由于液面是水平面,所以这些压强相同的点组成的面是水平面,即:水平面是压强处处相同的面。所以,水平面是等压面。两种不相混杂的液体的分界面也是水平面,自由表面是水深为0的各点组成的等压面。2.液面压强p0变化p0,内部压强p随之变化p0。此即水静压强等值传递的帕斯卡定律。应用于水压机、液压传动、气动阀、水力闸门等。3.重度不同,产生的压强不同。同一容器装上不同的液体,底面压强各不相同。注意:该规律是同种液体处于静止、连续的条件下推出,所以,只适用于静止、同种、连续的液体。二、流体静压强的表示法1.相对压强以大气压强为零点起算的压强。它表示给出的压强比周围大气压大多少。2.绝对压强以没有一点气体存在的绝对真空为零点起算的压强。或:从绝对零点起算的压强(一个容器中的气体完全抽空时,其压强为绝对零)。它是流体的全部压强。p’不能为负,它和pa相比,可大,可小。因此,p可正可负。当p为正时,称正压(即表压)。当p为负时,称负压,其绝对值为真空度(即真空表读数)。p’=p+pa3.真空值流体中某处的低于大气压强的部分。py=pa-p’4.图解p、p’、py、pa的关系绝对压强基准0压强p大气压强pa相对压强基准0A绝对压强p’AAA相对压强pABB真空度PB=-pByB绝对压强p’Bpa三、单位1.pa或N/m22.液柱高度mH2O;mmH2O。四、静压力分布图垂面、折面、斜面。第三节流体动力学基础一、流体动力学基本概念1.动水压力流动液体中,垂直于液流方向所测得的压力。2.稳定流:流体流动时,流速、压力、密度等不随时间而变。非稳定流:流体流动时,流速、压力、密度等随时间而变化。3.流线:流体连续质点在某一瞬时的流动方向线。它是光滑曲线,不相交,它的疏密可反映流速大小。迹线:流体某一质点在连续时间内的流动轨迹。稳定流可用迹线代替流线。4.元流:通过微元面积上各点作流线所形成的微小流束。总流:无数元流的总和。5.过流断面:处处与流线垂直的横断面。流速:质点运动的速度。流量:单位时间内通过过流断面的流体体积。6.湿周:过流断面与边界接触的长度。水力半径:过流断面与湿周之比。7.压力流:流体充满整个流动的空间并依靠压力作用而流动的液流或气流。特点:无自由表面,对壁面有压力。无压流:具有与气相接触的自由表面,只依靠自身重力作用而流动的液流。特点:部分周界不与固面接触,自由面上的压力等于大气压。二、稳定流的连续方程即质量守恒方程:21QQQvv2211常数2121vv三、稳定流能量方程伯努利方程:whgvgv222222221111适用条件:不可压缩稳定流,过流断面应为均匀流或渐变流,无惯性力作用,流量不变等。第四节水流阻力和水头损失一、水头损失的形式1.产生水头损失的原因:流体流动时,由于克服了流动阻力,一部分机械能不可逆转地转化为热能散失而产生的损失。2.沿程损失hf:受固体边界阻滞而产生。3.局部损失hj:由于受到局部阻碍的影响,流态急剧变化,形成涡旋而产生损失。4.水头损失hw:jfwhhh二、流态1.层流:流层间互不掺混,流线平行。2.紊流:各质点间强烈掺混,运动轨迹极不规则。3.雷诺实验:揭示了沿程损失与流态有关。判别:Re<Rek=2300(圆管),即为层流。非圆管RvReRek=500。三、水头损失1.沿程损失hf:hf=f(v,Re,d,l,粗糙度,流体性质…)gvRlhf2422.局部损失hj3.总损失hw:gvhj22jfwhhh其中,ξ为局部阻力系数。其中,R是水力半径。lih水头损失i为水力坡度,即单位管段长度上的水头损失,mmH2O/m。l为管段长度,m。第五节孔口、管嘴出流简介一、孔口出流1.薄壁圆形小孔口自由出流2.薄壁小孔口淹没出流二、管嘴出流
本文标题:流体力学基础知识
链接地址:https://www.777doc.com/doc-3631467 .html