您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019年高考文科数学全国I-II卷含答案
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设3i12iz,则z=()A.2B.3C.2D.12.已知集合1,2,3,4,5,6,72,3,4,52,3,6,7UAB,,,则UBAð()A.1,6B.1,7C.6,7D.1,6,73.已知0.20.32log0.2,2,0.2abc,则()A.B.C.D.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512(512≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()abcacbcabbcaA.165cmB.175cmC.185cmD.190cm5.函数f(x)=2sincosxxxx在[—π,π]的图像大致为()A.B.C.D.6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.tan255°=()A.-2-3B.-2+3C.2-3D.2+38.已知非零向量a,b满足a=2b,且(a–b)b,则a与b的夹角为()A.π6B.π3C.2π3D.5π69.如图是求112122的程序框图,图中空白框中应填入()A.A=12AB.A=12AC.A=112AD.A=112A10.双曲线C:22221(0,0)xyabab的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.1sin50D.1cos5011.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-14,则bc=()A.6B.5C.4D.312.已知椭圆C的焦点为12(1,0),(1,0)FF,过F2的直线与C交于A,B两点.若22||2||AFFB,1||||ABBF,则C的方程为()A.2212xyB.22132xyC.22143xyD.22154xy二、填空题:本题共4小题,每小题5分,共20分。13.曲线2)3(exyxx在点(0,0)处的切线方程为___________.14.记Sn为等比数列{an}的前n项和.若13314aS,,则S4=___________.15.函数3π()sin(2)3cos2fxxx的最小值为___________.16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()nadbcKabcdacbd.P(K2≥k)0.0500.0100.001k3.8416.63510.82818.(12分)记Sn为等差数列{an}的前n项和,已知S9=-a5.(1)若a3=4,求{an}的通项公式;(2)若a10,求使得Sn≥an的n的取值范围.19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.20.(12分)已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.21.(12分)已知点A,B关于坐标原点O对称,│AB│=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.2cos3sin11023.[选修4−5:不等式选讲](10分)已知a,b,c为正数,且满足abc=1.证明:(1)222111abcabc;(2)333()()()24abbcca.XkB1.com2019年普通高等学校招生全国统一考试(全国II卷)文科数学1.设集合1-|xxA,2|xxB,则BA()A.),1(B.)2,(C.)2,1(D.2.设(2)zii,则z()A.12iB.12iC.12iD.12i3.已知向量(2,3)a,(3,2)b,则ab()A.2B.2C.52D.504.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.()甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙6.设()fx为奇函数,且当0x时,()1xfxe,则当0x时,()fx()A.1xeB.1xeC.1xeD.1xe7.设,为两个平面,则//的充要条件是()A.内有无数条直线与平行B.内有两条相交直线与平行C.,平行于同一条直线D.,垂直于同一平面8.若123,44xx是函数()sin(0)fxx两个相邻的极值点,则=()A.2B.32C.1D.129.若抛物线)0(22ppxy的焦点是椭圆1322pypx的一个焦点,则p()A.2B.3C.4D.810.曲线2sincosyxx在点(,1)处的切线方程为()A.10xyB.2210xyC.2210xyD.10xy11.已知(0,)2,2sin2cos21,则sin()A.15B.55C.33D.25512.设F为双曲线2222:1(0,0)xyCabab的右焦点,0为坐标原点,以OF为直径的圆与圆222xya交于,PQ两点,若PQOF,则C的离心率为:()A.2B.3C.2D.5二、填空题13.若变量,xy满足约束条件23603020xyxyy则3zxy的最大值是.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为.15.ABC的内角,,ABC的对边分别为,,abc.已知sincos0bAaB,则B.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCDABCD的底面ABCD是正方形,点E在棱1AA上,1BEEC⊥.(1)证明:BE平面11EBC(2)若1AEAE,3AB,求四棱锥11EBBCC的体积.18.已知na是各项均为正数的等比数列,162,2231aaa.(1)求na的通项公式:(2)设nnab2log,求数列nb的前n项和.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组0.20,00,0.200.20,0.400.40,0.600.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:748.602.20.已知12,FF是椭圆C:22221(0,0)xyabab的两个焦点,P为C上的点,O为坐标原点.(1)若2POF为等边三角形,求C的离心率;(2)如果存在点P,使得12PFPF,且12FPF的面积等于16,求b的值和a的取值范围.21.已知函数()(1)ln1fxxxx.证明:(1)()fx存在唯一的极值点;(2)()0fx有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O为极点,点00(,)M0(0)在曲线:=4sinC上,直线l过点(4,0)A且与OM垂直,垂足为P.(1)当03时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.23.[选修4-5:不等式选讲]已知()|||2|()fxxaxxxa(1)当1a时,求不等式()0fx的解集:(2)若(,1)x时,()0fx,求a得取值范围.2019年普通高等学校招生全国统一考试文科数学·参考答案一、选择题1.C2.C3.B4.B5.D6.C7.D8.B9.A10.D11.A12.B二、填空题13.y=3x14.5815.−416.2三、解答题17.解:(1)由调查数据,男顾客中对该商场服务满意的比率为400.850,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K.由于4.7623.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.18.解:(1)设na的公差为d.由95Sa得140ad.由a3=4得124ad.于是18,2ad.因此na的通项公式为102nan.(2)由(1)得14ad
本文标题:2019年高考文科数学全国I-II卷含答案
链接地址:https://www.777doc.com/doc-3636765 .html