您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 勾股定理第一课时ppt
18.1勾股定理(1)——数形结合之美如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?BAC12米一、情景引入电线杆折断之前的高度=BC+AB=5米+AB的长这个会徽的设计基础是1700多年前,中国古代数学家赵爽的弦图,是为了证明勾股定理而绘制的。经过设计变化成为含义丰富的2002年国际数学家大会的会标。相传2500年前,毕达哥拉斯有一次在朋友家里做客时,通过朋友铺地的成的地面中反映了直角三角形三边的某种数量关系.我们也来观察右图中的地面,看看有什么发现?ABC填表:若小方格的边长为1.图甲图甲图乙A的面积B的面积C的面积CABC思考:正方形A、B、C的面积有什么关系?44891625图乙SA+SB=SCAB图乙SA+SB=SCABC图甲abcabcC猜想:a、b、c之间的关系?a2+b2=c2问题:边长为任意长度的直角三角形还成立吗?3.猜想:a、b、c之间的关系?a2+b2=c2ABCC图乙SA+SB=SCSA+SB=SC图甲abcabc4.思考:任意三边的直角三角形也成立吗?利用拼图来验证勾股定理:cab1、准备四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边为c);2、你能用这四个直角三角形拼成一个以斜边c正方形吗?拼一拼试试看?3.你能否就你拼出的图说明a2+b2=c2?cabcabcabcabcab∵c2=4•ab/2+(b-a)2=2ab+b2-2ab+a2=a2+b2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为c24•ab/2-(b-a)2cabcabcabcab∵(a+b)2=c2+4•ab/2a2+2ab+b2=c2+2ab∴a2+b2=c2大正方形的面积可以表示为;也可以表示为(a+b)2c2+4•ab/2cabcab勾股定理的证明证明方法4:美国总统加菲尔德的证明方法勾股定理如果直角三角形两直角边分别为a,b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方.222cbaac勾弦b股归纳定理:勾股强调:勾股定理反映了直角三角形的三边关系。(毕达哥拉斯定理)abcabcabcc2=a2+b2abc确定斜边b2=c2-a2a2=c2-b2a2+b2=c2灵活运用公式?变式运用:a2+c2=b2b2+c2=a2例:在Rt△ABC中,∠C=90°.(1)已知:a=6,b=8,求c;(2)已知:a=40,c=41,求b;(3)已知:c=13,b=5,求a;(4)已知:a:b=3:4,c=15,求a、b.例题分析在直角三角形中,已知两边,可求第三边;方法小结1.求下列图中表示边的未知数x、y、z的值.①81144z②③625576144169比一比看看谁算得快!2.求下列直角三角形中未知边的长:可用勾股定理建立方程.方法小结:8x171620x125x3、在波平如静的湖面上,有一朵美丽的红莲,它高出水面1米,一阵大风吹过,红莲被吹至一边,花朵齐及水面,如果知道红莲移动的水平距离为2米,问这里水深多少?BCAH12?┓xx2+22=(x+1)2∵∠DAB=90º∴在Rt△ABD中,BD2=AD2+AB2=32+42=25∴BD=5同理可得DC=13解:运用勾股定理可解决直角三角形中边的计算或证明已知:四边形ABCD中,∠DAB=∠DBC=90ºAD=3,AB=4,BC=12求:DC的长。例2BCDA1、已知:Rt△ABC中,AB=4,AC=3,则BC的长为.5或7试一试:43CAB?43ACB?试一试:2、如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是7cm,求正方形A、B、C、D的面积之和。1、一个门框尺寸如下图所示.①若有一块长3米,宽0.8米的薄木板,能否通过此门?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?对角线=521222.2236.2∴能通过此门.应用知识回归生活探究:生活中的数学问题2、小明的妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?我们通常所说的29英寸或74厘米的电视机,是指其荧屏对角线的长度27454762258465480∴售货员没搞错∵想一想荧屏对角线大约为74厘米我知道了……我感受了……我探索了……c2=a2+b2两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股史话国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。国家之一。早在三千多年前我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。比毕达哥拉斯要早了五百多年。•勾股定理是几何学中的明珠,所以它充满魅力,千百年来,1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。这是任何定理无法比拟的。勾股定理是人类最伟大的十个科学发现之一。一、总统证法aabbcc222cbaabcbaba222212121222212121cba2梯形c21ab)212(a)b)(b(a21S美国第20任总统-伽菲尔德二、出入相补•刘徽(生于公元三世纪)•三國魏晋时代人。•魏景元四年(即263年)为古籍《九章算术》作注释。•在注作中,提出以「出入相补」的原理来证明「勾股定理」。后人称该图为「青朱入出图」。黄色部分面积为a2绿色部分面积为b2边长为c1972年发射的星际飞船“先锋10号”带着这张《青朱入出图》飞向太空,成为与外星人勾通的符号。数学来源于生活,服务于生活!
本文标题:勾股定理第一课时ppt
链接地址:https://www.777doc.com/doc-3638489 .html