您好,欢迎访问三七文档
名称解释1、抗氧化剂:抗氧化剂可以抑制或延缓油脂的氧化,按抗氧化机理分为自由基清除剂、单重态氧猝灭剂、氢过氧化物分解剂、酶抑制剂、抗氧化增效剂等。2、美拉德反应:主要是指还原糖与氨基酸、蛋白质之间的复杂反应·反应过程中形成的醛类,酵类可发生缩合作用产生醛醇类及脱氮聚合物类。最终形成含氮的棕色聚合物或共聚物类黑素,以及一些需宜和非需宜的风味物质。3、酸败:脂类氧化是含脂食品品质劣化的主要原因之一,它使食用油脂及含脂肪食品产生各种异味和臭味,统称为酸败。4、反竞争性抑制:反竞争性抑制作用不像竞争性抑制和非竞争性抑制反应,抑制剂不能直接与游离酶结合,仅能与酶-底物复合物反应,形成一个或多个中间复合物。5、维生素:维持人体和动物正常生理功能所必需的一类天然有机化合物,一般不能在人体内合成,通常由食物来供给。6、食品添加剂:是用于改善食品品质和色、香、味以及为防腐和加工工艺的需要,加入食品中的化学合成物质或天然物质。7、酶:酶是具有生物催化功能的生物大分子,除少数几种酶为核酸分子外,绝大多数酶的化学本质为蛋白质。8、闪点:是在严格规定的条件下加热油脂,油脂挥发能被点燃但不能维持燃烧的温度。9、氨基酸等电点10、蛋白质变性作用:蛋白质分子受到某些物理、化学因素的影响时,发生生物活性丧失、溶解度降低等性质改变,但是不涉及一级结构改变,而是蛋白质分子空间结构改变,这类变化称为变性作用。11、焦糖化反应:糖类尤其是单糖在没有含氨基化合物存在的情况下,加热到熔点以上的温度(一般是140~170℃以上)因糖发生脱水与降解,也会产生褐变反应,这种反应称为焦糖化反应,英译又称卡拉密尔作用。12、酶的活性中心:指酶与底物结合并发生反应的区域,一般位于酶分子的表面,大多数为疏水区。是由结合基团和催化基团组成,结合基团负责与底物特异性结合,催化基团直接参与催化。13、防腐剂:具有杀死微生物或抑制其增殖作用的物质,更确切地可将此类物质称为抗微生物剂或抗菌剂。14、蛋白质四级结构:具有两条或两条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构成为蛋白质的四级结构。15、脂肪酸的β氧化:脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间发生断裂,β-碳原子被氧化形成酮基,然后裂解生成2个碳原子的乙酰CoA和较原来少2个碳原子的脂肪酸的过程。16、水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示:式中,p为某种食品在密闭容器中达到平衡状态时的水蒸气分压;Po表示在同一温度下纯水的饱和蒸气压;ERH是食品样品周围的空气平衡相对湿度。17、乳化:是一种液体以极微小液滴均匀分散在互不相溶的另一液体中的作用。18、酸价:指中和1克油脂中游离脂肪酸所需的氢氧化钾的毫克数。19、酶促褐变:较浅色的水果、蔬菜在受到机械性损伤(削皮、切片、压伤、虫咬、磨浆、捣碎)及处于异常环境变化(受冻、受热等),在酶促(催化)下氧化而呈褐色,称为酶促褐变。20、自由水:又称游离水或体相水,是指那些没有被非水物质化学结合的水,主要是通过一些物理作用而滞留的水。21、多糖胶凝作用:在食品加工中,多糖或蛋白质等大分子,可通过氢键、疏水相互作用、范德华引力、离子桥接、缠结或共价键等相互作用,形成海绵状的三维网状凝胶结构。网孔中充满着液相,液相是由较小分子质量的溶质和部分高聚物组成的水溶液。22、竞争性抑制:抑制剂与游离酶的活性位点结合,从而阻止底物与酶的结合,所以底物与抑制剂之间存在竞争。23、结合水:通常是指存在于溶质或其它非水成分附近的、与溶质分子之间通过化学键结合的那部分水。24、淀粉的老化:热的淀粉糊冷却时,通常形成黏弹性的凝胶,凝胶中联结区的形成表明淀粉分子开始结晶,并失去溶解性。通常将淀粉糊冷却或储藏时,淀粉分子通过氢键相互作用产生沉淀或不溶解的现象,称作淀粉的老化。淀粉的老化实质上是一个再结晶的过程。25、着火点:是在严格规定的条件下加热油脂,直到油脂被点燃后能够维持燃烧5s以上时的温度。26、不完全蛋白质:蛋白质不能提供人体所需的全部必需氨基酸,单纯靠它们既不能促进生长发育,也不能维持生命。27、必需元素:维持正常生命活动不可缺少的元素,包括大量元素与微量元素。28、离子水合作用:在水中添加可解离的溶质,会使纯水通过氢键键合形成的四面体排列的正常结构遭到破坏,对于不具有氢键受体和给体的简单无机离子,它们与水的相互作用仅仅是离子-偶极的极性结合。这种作用通常被称为离子水合作用。29、膳食纤维:凡是不能被人体内源酶消化吸收的可食用植物细胞、多糖、木质素以及相关物质的总和。30、乳化剂:乳化剂是表面活性物质,分子中同时具有亲水基和亲油基,它聚集在油/水界面上,可以降低界面张力和减少形成乳状液所需要的能量,从而提高乳状液的稳定性。31、蛋白质三级结构:蛋白质的多肽链在各种二级结构的基础上再进一步盘旋或折叠形成一定规律的三维空间结构,称为蛋白质的三级结构。32、生物活性肽:指那些有特殊的生理活性的肽类,可分为天然存在的活性肽和蛋白质酶解活性肽。33、水分吸着等温线:在恒温条件下,食品的含水量(用每单位干物质质量中水的质量表示)与aw的关系曲线。34、非酶褐变:非酶褐变反应主要是碳水化合物在热的作用下发生的一系列化学反应,产生大量的有色成分和无色成分,或挥发性和非挥发性成分。由于非酶褐变反应的结果使食品产生了褐色,故将这类反应统称为非酶褐变反应。就碳水化合物而言,非酶褐变反应包括美拉德反应、焦糖化褐变、抗坏血酸褐变和酚类成分的褐变。35、塑性脂肪:室温下呈固态的油脂如猪油、牛油实际是由液体油和固体脂两部分组成的混合物,通常只有在很低的温度下才能完全转化为固体。这种由液体油和固体脂均匀融合并经一定加工而成的脂肪称为塑性脂肪。36、酯交换:酯交换是改变脂肪酸在三酰基甘油中的分布,使脂肪酸与甘油分子自由连接或定向重排,改善其性能,它包括在一种三酰基甘油分子内的酯交换和不同分子间的酯交换反应。37、必须脂肪酸:必需脂肪酸是指机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的多不饱和脂肪酸(PUFA)。简答题1、简述食品中AW与美拉德褐变的关系。答:食品中Aw与美拉德褐变的关系表现出一种钟形曲线形状,当食品中Aw=0.3~0.7时,多数食品会发生美拉德褐变反应。造成食品中Aw与美拉德褐变的钟形曲线形状的主要原因在于:1、高于BHT单分子层Aw以后美拉德褐变就可进行,2、Aw较低时,水多呈水-水和水-溶质的氢键键合作用与邻近的分子缔合作用,不利于反应物和反应产物的移动,限制了美拉德褐变的进行。随着Aw的增大,有利于反应物和产物的移动,美拉德褐变增大至最高点,但Aw继续增大,反应物被稀释,美拉德褐变下降。2、影响食品中脂类自动氧化的因素。答:(1)脂肪酸组成脂类自动氧化与组成脂类的脂肪酸的双键数目、位置和几何形状都有关系。双键数目越多,氧化速度越快,顺式酸比反式异构体更容易氧化;含共轭双键的比没有共轭双键的易氧化;饱和脂肪酸自动氧化远远低于不饱和脂肪酸;游离脂肪酸比甘油酯氧化速率略高,油脂中脂肪酸的无序分布有利于降低脂肪的自动氧化速度。(2)温度一般说来,脂类的氧化速率随着温度升高而增加,因为高温既可以促进游离基的产生,又可以加快氢过氧化物的分解。(3)氧浓度体系中供氧充分时,氧分压对氧化速率没有影响,而当氧分压很低时,氧化速率与氧分压近似成正比。(4)表面积脂类的自动氧化速率与它和空气接触的表面积成正比关系。所以当表面积与体积之比较大时,降低氧分压对降低氧化速率的效果不大。(5)水分在含水量很低(aw低于0.1)的干燥食品中,脂类氧化反应很迅速。随着水分活度的增加,氧化速率降低,当水分含量增加到相当于水分活度0.3时,可阻止脂类氧化,使氧化速率变得最小,随着水分活度的继续增加(aw=0.3-0.7),氧化速率又加快进行,过高的水分活度(如aw大于0.8)时,由于催化剂、反应物被稀释,脂肪的氧化反应速度降低。(6)助氧化剂一些具有合适氧化-还原电位的二价或多价过渡金属元素,是有效的助氧化剂,如Co、Cu、Fe、Mn和Ni等。(7)光和射线可见光、紫外线和高能射线都能促进脂类自动氧化,这是因为它们能引发自由基、促使氢过氧化物分解,特别是紫外线和γ射线。(8)抗氧化剂抗氧化剂能延缓和减慢脂类的自动氧化速率。3、维持蛋白质的空间结构的作用力有哪几种?各级结构的作用力主要有哪几种?答:维持蛋白质空间结构的作用力主要是氢键、盐键、疏水键和范德华力等非共价键,又称次级键。此外,在某些蛋白质中还有二硫键,二硫键在维持蛋白质构象方面也起着重要作用。蛋白质一级结构的主要是通过肽键连接;维系二级结构的化学键主要是氢键;三级结构的形成和稳定主要靠疏水键、盐键、二硫键、氢键和范德华力。其中疏水键是最主要的稳定力量。疏水键是蛋白质分子中疏水基团之间的结合力,酸性和碱性氨基酸的R基团可以带电荷,正负电荷互相吸引形成盐键,与氢原子共用电子对形成的键为氢键;在四级结构中,各亚基之间的结合力主要是疏水作用,氢键和离子键也参与维持四级结构。4、食品中脂类自动氧化的因素(同2)5、试述蛋白质变性及其影响因素。答:蛋白质分子受到某些物理、化学因素的影响时,发生生物活性丧失,溶解度降低等性质改变,但是不涉及一级结构改变,而是蛋白质分子空间结构改变,这类变化称为变性作用。变性的实质是蛋白质分子次级键的破坏引起二级、三级、四级结构的变化。蛋白质变性的影响因素有:热、辐射、超声波、剧烈震荡等物理因素,还有酸、碱、化学试剂、金属盐等化学因素。6、请简述酶作为催化剂的特点。答:酶与其他催化剂相比具有显著的特性:高催化效率、高专一性和酶活的可调节性。但酶比其他一般催化剂更加脆弱,容易失活,凡使蛋白质变性的因素都能使酶破坏而完全失去活性。在生命体中酶活性是受多方面调控的,如酶浓度的调节,激素的调节,共价修饰调节,抑制剂和激活剂的调节,反馈调节,异构调节,金属离子和其他小分子化合物的调节等7、简述油脂酸败的原因。答:油脂暴露于空气中会自发地进行氧化作用,先生成氢过氧化物,氢过氧化物继而分解产生低级醛、酮、羧酸等,这些物质具有令人不快的气味,从而使油脂发生酸败。此外,脂肪在高温下还能发生热分解反应,使酸价增高并且产生刺激性气味8、可采用那些方法来控制美拉德反应?答:控制方法(1)降低水活性至0.2以下就能抑制这种反应的发生,(2)增大液体食品的稀释度(3)降低pH(4)降低温度(5)除去食品中能参与褐变反应的底物也能使褐变程度减弱,这种底物通常是糖类。9、pH对酶催化活性影响的主要原因。答:①答远离酶的最适pH的酸碱环境将影响酶的构象,甚至使酶变性或失活。②偏离酶的最适pH的酸碱环境酶虽然不变性,但由于改变了酶的活性位点上产生的静电荷数量,从而影响酶活力。③pH影响酶分子中其他基团的解离。10、简要概括食品中的水分存在状态。答:食品中的水分有着多种存在状态,一般可将食品中的水分分为自由水(或称游离水、体相水)和结合水(或称束缚水、固定水)。其中,结合水又可根据被结合的牢固程度,可细分为化合水、邻近水、多层水;自由水可根据这部分水在食品中的物理作用方式也可细分为滞化水、毛细管水、自由流动水。但强调的是上述对食品中的水分划分只是相对的。11、抗坏血酸褐变的反应历程。答:抗坏血酸不仅具有酸性还具有还原性,因此,常作为天然抗氧化剂。抗坏血酸在对其它成分抗氧化的同时它自身也极易氧化,其氧化有两种途径:(1)有氧时抗坏血酸被氧化形成脱氢抗坏血酸,再脱水形成DKG(2,3-二酮古洛糖酸)后,脱羧产生酮木糖,最终产生还原酮。还原酮极易参与美拉德反应德中间及最终阶段。此时抗坏血酸主要是受溶液氧及上部气体的影响,分解反应相当迅速。(2)当食品中存在有比抗坏血酸氧化还原电位高的成分时,无氧时抗坏血酸因脱氢而被氧化,生成脱氢抗坏血酸或抗坏血酸酮式环状结构,在水参与下抗坏血酸酮式环状结构开环成2,3-二酮古洛糖酸;2,3-二酮古洛糖酸进一步脱羧、脱水生成呋喃醛或脱羧生成还原酮。呋喃醛、还原酮等都会参与美拉德反应,生
本文标题:食品化学
链接地址:https://www.777doc.com/doc-3642520 .html