您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考数学数列大题训练[1]
1高考数学数列大题训练1.已知等比数列432,,,}{aaaan中分别是某等差数列的第5项、第3项、第2项,且1,641qa公比(Ⅰ)求na;(Ⅱ)设nnab2log,求数列.|}{|nnTnb项和的前2.已知数列}{na满足递推式)2(121naann,其中.154a(Ⅰ)求321,,aaa;(Ⅱ)求数列}{na的通项公式;(Ⅲ)求数列}{na的前n项和nS3.已知数列{}na的前n项和为nS,且有12a,11353nnnnSaaS(2)n(1)求数列na的通项公式;(2)若(21)nnbna,求数列na的前n项的和nT。4.已知数列{na}满足11a,且),2(22*1Nnnaannn且.(Ⅰ)求2a,3a;(Ⅱ)证明数列{nna2}是等差数列;(Ⅲ)求数列{na}的前n项之和nS5.已知数列na满足31a,1211nnnaaa.(1)求2a,3a,4a;(2)求证:数列11na是等差数列,并写出na的一个通项。26.数列na的前n项和为nS,11a,*12()nnaSnN·2007·新疆奎屯wxckt@126.com特级教师王新敞源头学子小屋(Ⅰ)求数列na的通项na;(Ⅱ)求数列nna的前n项和nT7.22,,4,21121nnnnnbbaabaa.求证:⑴数列{bn+2}是公比为2的等比数列;⑵nann221;⑶4)1(2221nnaaann.8.已知各项都不相等的等差数列}{na的前六项和为60,且2116aaa和为的等比中项.(1)求数列}{na的通项公式nnSna项和及前;(2)若数列}1{,3),(}{11nnnnnbbNnabbb求数列且满足的前n项和Tn.9.已知nS是数列na的前n项和,123,22aa,且113210nnnSSS,其中*2,nnN.①求证数列1na是等比数列;②求数列na的前n项和nS.310.已知nS是数列{na}的前n项和,并且1a=1,对任意正整数n,241nnaS;设,3,2,1(21naabnnn).(I)证明数列}{nb是等比数列,并求}{nb的通项公式;(II)设}loglog1{,32212nnnnnCCTbC为数列的前n项和,求nT.高考数列大题参考答案1.解析(1)设该等差数列为{}nc,则25ac,33ac,42ac533222()ccdcc2334()2()aaaa即:223111122aqaqaqaq12(1)qqq,1q,121,2qq,1164()2na(2)121log[64()]6(1)72nnbnn,{}nb的前n项和(13)2nnnS当17n时,0nb,(13)2nnnnTS(8分)当8n时,0nb,12789nnTbbbbbb789777()()2nnnSbbbSSSSS(13)422nn(13)(17,)2(13)42(8,)2nnnnnTnnnn**NN2.解:(1)由151241aaann及知,1234aa解得:,73a同理得.1,312aa(2)由121nnaa知2211nnaa)1(211nnaa1na构成以211a为首项以2为公比的等比数列;112)1(1nnaa;,21nna.12nna为所求通项公式(3)12nna123......nnSaaaa123(21)(21)(21)......(21)n123(222......2)nnnn21)21(2.221nn3.解:由11335(2)nnnnSSaan,12nnaa,又12a,112nnaa,{}na是以2为首项,12为公比的等比数列,122112()()222nnnna2(21)2nnbn,1012123252(21)2nnTn(1)4012111232(23)2(21)22nnnTnn(2)(1)—(2)得0121122(222)(21)22nnnTn即:1111112[1(2)]2(21)26(23)2212nnnnTnn,212(23)2nnTn4.解:(Ⅰ)622212aa,2022323aa.(Ⅱ)),2(22*1Nnnaannn且,∴),2(122*11Nnnaannnn且,即),2(122*11Nnnaannnn且.∴数列}2{nna是首项为21211a,公差为1d的等差数列.(Ⅲ)由(Ⅱ)得,211)1(21)1(212nndnann∴nnna2)21(.)2(2)21(2)211(2252232212)1(2)21(2252232211432321nnnnnnnSnS1322)21(2221)2()1(nnnnS得12)21(2222132nnn12)21(21)21(21nnn32)23(nn.∴32)32(nnnS.5.解:(1)79,57,35432aaa(2)证明:由题设可知Nnaann,10且1211nnnaaa111111nnnnaaaa111111nnaa11na是以21为首项,1为公差的等差数列故2112111nnan12121122nnnan6.解:(Ⅰ)12nnaS,12nnnSSS,13nnSS·2007·新疆奎屯wxckt@126.com特级教师,数列nS是首项为1,公比为3的等比数列,1*3()nnSnN·2007·新疆奎屯wxckt@126.com特级教师≥时,21223(2)nnnaSn≥,21132nnnan,,,≥.(Ⅱ)12323nnTaaana,当1n时,11T;当2n≥时,0121436323nnTn,…………①12133436323nnTn,………………………②①②得:12212242(333)23nnnTn213(13)222313nnn11(12)3nn·2007·新疆奎屯wxckt@126.com特级教师(2)22nnTnn≥·2007·新疆奎屯wxckt@126.com特级教师也满足上式,1113(2)22nnTnn≥7.解:⑴)2(221nnbb2221nnbb52121aab62222bb数列{bn+2}是首项为4公比为2的等比数列;⑵由⑴知112242nnnb221nnb2211nnnaa22212aa22323aa……221nnnaa上列(n-1)式子累加:nann2)222(232nann221⑶2)1(2)222(13221nnaaann.4)1(2221nnaaann8.解:(1)设等差数列}{na的公差为d,则21111)5()20(,60156dadaada解得.5,21ad32nan.)4(2)325(nnnnSn(2)由).,2(,111Nnnabbabbnnnnnn112211121112,()()()(1)(14)3(2).3,nnnnnnnnbbbbbbbbaaabnnnnb当时对也适合))(2(Nnnnbn).211(21)2(11nnnnbn)211123(21)2114121311(21nnnnTn)2)(1(4532nnnn9.解:①113210nnnSSS112()1nnnnSSSS121(2)nnaan又123,22aa也满足上式,*121()nnaanN112(1)nnaa(*nN)数列1na是公比为2,首项为1112a的等比数列(2)由①,1211222nnna221nna于是12...nnSaaa1012212121...21n1012222...2nn212nn10.解析:(I)),2(24,2411naSaSnnnn两式相减:),2(4411naaannn*),(2)2(2,2)(42,2),2)((41111121111Nnbaabaaaaabaabnaaannnnnnnnnnnnnnnn,21nnbb}{nb是以2为公比的等比数列,,325,523,24,2112121121baaaaaaab而*)(231Nnbnn(II),231nnnbC,)1(12log2log1loglog11222212nnCCnnnn而,111)1(1nnnn.111)111()4131()3121()211(nnnTn
本文标题:高考数学数列大题训练[1]
链接地址:https://www.777doc.com/doc-3643149 .html