您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 因式分解之十字相乘法专项练习题
十字相乘法进行因式分解学生姓名:杨宇涵【重点难点解析】1.二次三项式多项式cbxax2,称为字母x的二次三项式,其中2ax称为二次项,bx为一次项,c为常数项.例如,322xx和652xx都是关于x的二次三项式.在多项式2286yxyx中,如果把y看作常数,就是关于x的二次三项式;如果把x看作常数,就是关于y的二次三项式.在多项式37222abba中,把ab看作一个整体,即3)(7)(22abab,就是关于ab的二次三项式.同样,多项式12)(7)(2yxyx,把x+y看作一个整体,就是关于x+y的二次三项式.十字相乘法是适用于二次三项式的因式分解的方法.2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax+b)(cx+d)竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式qpxx2,如果能把常数项q分解成两个因数a,b的积,并且a+b为一次项系数p,那么它就可以运用公式))(()(2bxaxabxbax分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式cbxax2(a,b,c都是整数且a≠0)来说,如果存在四个整数2121,,,ccaa,使aaa21,ccc21,且bcaca1221,那么cbxax2))(()(2211211221221cxacxaccxcacaxaa它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522xxyxyx3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.【典型热点考题】例1把下列各式分解因式:(1)1522xx;(2)2265yxyx.点悟:(1)常数项-15可分为3×(-5),且3+(-5)=-2恰为一次项系数;(2)将y看作常数,转化为关于x的二次三项式,常数项26y可分为(-2y)(-3y),而(-2y)+(-3y)=(-5y)恰为一次项系数.解:(1))5)(3(1522xxxx;(2))3)(2(6522yxyxyxyx.例2把下列各式分解因式:(1)3522xx;(2)3832xx.点悟:我们要把多项式cbxax2分解成形如))((2211caxcax的形式,这里aaa21,ccc21而bcaca1221.解:(1))3)(12(3522xxxx;(2))x)(x(xx3133832.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.例3把下列各式分解因式:(1)91024xx;(2))(2)(5)(723yxyxyx;(3)120)8(22)8(222aaaa.点悟:(1)把2x看作一整体,从而转化为关于2x的二次三项式;(2)提取公因式(x+y)后,原式可转化为关于(x+y)的二次三项式;(3)以)8(2aa为整体,转化为关于)8(2aa的二次三项式.解:(1))9)(1(9102224xxxx=(x+1)(x-1)(x+3)(x-3).(2))(2)(5)(723yxyxyx]2)(5)(7)[(2yxyxyx=(x+y)[(x+y)-1][7(x+y)+2]=(x+y)(x+y-1)(7x+7y+2).(3)120)8(22)8(222aaaa)108)(128(22aaaa)108)(6)(2(2aaaa点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止.因式分解之十字相乘法专项练习题(1)a2-7a+6;(2)8x2+6x-35;(3)18x2-21x+5;(4)20-9y-20y2;(5)2x2+3x+1;(6)2y2+y-6;(7)6x2-13x+6;(8)3a2-7a-6;(9)6x2-11x+3;(10)4m2+8m+3;(11)10x2-21x+2;(12)8m2-22m+15;(13)4n2+4n-15;(14)6a2+a-35;(15)5x2-8x-13;(16)4x2+15x+9;(17)15x2+x-2;(18)6y2+19y+10;(19)2(a+b)2+(a+b)(a-b)-6(a-b)2;(20)7(x-1)2+4(x-1)-20;14.把下列各式分解因式:(1)6724xx;(2)36524xx;(3)422416654yyxx;(4)633687bbaa;(5)234456aaa;(6)422469374babaa.15.把下列各式分解因式:(1)2224)3(xx;(2)9)2(22xx;(3)2222)332()123(xxxx;(4)60)(17)(222xxxx;(5)8)2(7)2(222xxxx;(6)48)2(14)2(2baba.(1)22157xx(2)2384aa(3)2576xx261110yy2252310abab222231710ababxyxy22712xxyy42718xx22483mmnn53251520xxyxy六、解下列方程(1)220xx2560xx23440aa227150bb
本文标题:因式分解之十字相乘法专项练习题
链接地址:https://www.777doc.com/doc-3648659 .html