您好,欢迎访问三七文档
线面角的三种求法河北王学会1.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1(如图1)四面体ABCS中,SA,SB,SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1)∵SC⊥SB,SC⊥SA,BMHSCA图1∴SC⊥平面SAB故SB是斜线BC在平面SAB上的射影,∴∠SBC是直线BC与平面SAB所成的角为60°。(2)连结SM,CM,则SM⊥AB,又∵SC⊥AB,∴AB⊥平面SCM,∴面ABC⊥面SCM过S作SH⊥CM于H,则SH⊥平面ABC∴CH即为SC在面ABC内的射影。∠SCH为SC与平面ABC所成的角。sin∠SCH=SH/SC∴SC与平面ABC所成的角的正弦值为√7/7(“垂线”是相对的,SC是面SAB的垂线,又是面ABC的斜线.作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)2.利用公式sinθ=h/ι其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。例2(如图2)长方体ABCD-A1B1C1D1,AB=3,BC=2,A1A=4,求AB与面AB1C1D所成的角。解:设点B到AB1C1D的距离为h,∵VB﹣AB1C1=VA﹣BB1C1∴1/3S△AB1C1·h=1/3S△BB1C1·AB,易得h=12/5设AB与面AB1C1D所成的角为θ,则sinθ=h/AB=4/5A1C1D1H4CB123BAD图2∴AB与面AB1C1D所成的角为arcsin4/53.利用公式cosθ=cosθ1·cosθ2(如图3)若OA为平面的一条斜线,O为斜足,OB为OA在面α内的射影,OC为面α内的一条直线,其中θ为OA与OC所成的角,BαOAC图3θ1为OA与OB所成的角,即线面角,θ2为OB与OC所成的角,那么cosθ=cosθ1·cosθ2(同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)例3(如图4)已知直线OA,OB,OC两两所成的角为60°,,求直线OA与面OBC所成的角的余弦值。解:∵∠AOB=∠AOC∴OA在面OBC内的射影在∠BOC的平分线OD上,则∠AOD即为OA与面OBC所成的角,可知∠DOC=30°,cos∠AOC=cos∠AOD·cos∠DOC∴cos60°=cos∠AOD·cos30°∴cos∠AOD=√3/3∴OA与面OBC所成的角的余弦值为√3/3。OαDACB图4
本文标题:线面角的三种求法
链接地址:https://www.777doc.com/doc-3650129 .html