您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学第14章全等三角形复习课件(高效)_ppt1
全等三角形的判定(复习)全等形全等三角形性质判定应用HL全等三角形对应边相等全等三角形对应角相等解决问题SSSSASASAAAS一般三角形直角三角形知识结构图三角形全等判定方法1用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)知识梳理:FEDCBAAC=DF∠C=∠FBC=EF∠A=∠D(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA三角形全等判定方法2知识梳理:三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:三角形全等判定方法3知识梳理:知识梳理:思考:在△ABC和△DFE中,当∠A=∠D,∠B=∠E和AC=DF时,能否得到△ABC≌△DFE?三角形全等判定方法4有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。CBAFEDABCA′B′C′知识梳理:直角三角形全等判定:HL知识总结:一般三角形全等的条件:1.定义(重合)法;2.SSS;3.SAS;4.ASA;5.AAS.直角三角形全等特有的条件:HL.包括直角三角形不包括其它形状的三角形解题中常用的4种方法二、几种常见全等三角形基本图形FEDCBAFEDCBAFEDCBA平移EDCBAEDCBA旋转EDCBADCBADCBAEDCBA翻折ACDEFG找找复杂图形中的基本图形设计意图:知道了这几种基本图形,那么在解决全等三角形问题时,就容易从复杂的图形中分解出基本图形,解题就会变得简便。一、全等三角形性质应用1:如图,△AOB≌△COD,AB=7,∠C=60°则CD=,∠A=.ABCDO14一、挖掘“隐含条件”判全等1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由ADBC图(1)2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠C=,BE=.说说理由.BCODEA图(2)3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD=.说说理由.ADBCO图(3)20°5cm3cm学习提示:公共边,公共角,对顶角这些都是隐含的边,角相等的条件!154、如图,已知AD平分∠BAC,要使△ABD≌△ACD,•根据“SAS”需要添加条件;•根据“ASA”需要添加条件;•根据“AAS”需要添加条件;ABCDAB=AC∠BDA=∠CDA∠B=∠C友情提示:添加条件的题目.首先要找到已具备的条件,这些条件有些是题目已知条件,有些是图中隐含条件.二.添条件判全等16三、熟练转化“间接条件”判全等5如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?ADBCFE7.“三月三,放风筝”如图(6)是小东同学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。请用所学的知识给予说明。6.如图(5)∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?ACEBD175.如图(4)AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?解:∵AE=CF(已知)ADBCFE∴AE-FE=CF-EF(等量减等量,差相等)即AF=CE在△AFD和△CEB中,∴△AFD≌△CEB∠AFD=∠CEB(已知)DF=BE(已知)AF=CE(已证)(SAS)186.如图(5)∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?ACEBD解:∵∠CAE=∠BAD(已知)∴∠CAE+∠BAE=∠BAD+∠BAE(等量减等量,差相等)即∠BAC=∠DAE在△ABC和△ADE中,∴△ABC≌△ADE∠BAC=∠DAE(已证)AC=AE(已知)∠B=∠D(已知)(AAS)197.“三月三,放风筝”如图(6)是小东同学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。请用所学的知识给予说明。解:连接AC∴△ADC≌△ABC(SSS)∴∠ABC=∠ADC(全等三角形的对应角相等)在△ABC和△ADC中,BC=DC(已知)AC=AC(公共边)AB=AD(已知)方法总结证明两个三角形全等的基本思路:(1):已知两边找第三边(SSS)找夹角(SAS)(2):已知一边一角已知一边和它的邻角找是否有直角(HL)已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL)(3):已知两角找两角的夹边(ASA)找夹边外的任意边(AAS)218.测量如图河的宽度,某人在河的对岸找到一参照物树木A,视线AB与河岸垂直,然后该人沿河岸步行10步(每步约0.75M)到O处,进行标记,再向前步行10步到D处,最后背对河岸向前步行20步,此时树木A,标记O,恰好在同一视线上,则河的宽度为米。15ABODC实际应用2288120'20'40'40'FEDCBA9.如图,ΔABC与ΔDEF是否全等?为什么?已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=ADEDCAB变式:以上条件不变,将△ABC绕点C旋转一定角度,以上的结论海成立吗?证明:∵△ABC和△ECD都是等边三角形∴AC=BCDC=EC∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠DCA在△ACD和△BCE中AC=BC∠BCE=∠DCADC=EC∴△ACD≌△BCE(SAS)∴BE=AD拓展延伸课堂总结学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”交流平台本节课你还有不理解的地方吗?祝同学们学习进步再见
本文标题:八年级数学第14章全等三角形复习课件(高效)_ppt1
链接地址:https://www.777doc.com/doc-3666255 .html