您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高中数学选修2-3所有试卷含答案
1特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。2本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。本套资料酌收复印工本费。李传牛老师保留本作品的著作权,未经许可不得翻印!联络方式:(移动电话)13976611338,69626930李老师。(电子邮件)lcn111@sohu.com目录:数学选修2-3数学选修2-3第一章:计数原理[基础训练A组]数学选修2-3第一章:计数原理[综合训练B组]数学选修2-3第一章:计数原理[提高训练C组]数学选修2-3第二章:离散型随机变量解答题精选(本份资料工本费:4.00元)3新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。欢迎使用本资料!辅导咨询电话:13976611338,李老师。(数学选修2--3)第一章计数原理[基础训练A组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81B.64C.12D.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()A.140种B.84种C.70种D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A.33AB.334AC.523533AAAD.2311323233AAAAA4.,,,,abcde共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()A.20B.16C.10D.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人.6.在8312xx的展开式中的常数项是()A.7B.7C.28D.287.5(12)(2)xx的展开式中3x的项的系数是()A.120B.120C.100D.1008.22nxx展开式中只有第六项二项式系数最大,则展开式中的常数项是()A.180B.90C.45D.360子曰:知之者不如好之者,好之者不如乐之者。4二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法.3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(3)x的展开式中,6x的系数是.5.在220(1)x展开式中,如果第4r项和第2r项的二项式系数相等,则r,4rT.6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x.8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?52.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。3.解方程432(1)140;xxAA112311(2)nnnnnnnnCCCC64.已知21nxx展开式中的二项式系数的和比7(32)ab展开式的二项式系数的和大128,求21nxx展开式中的系数最大的项和系数量小的项.5.(1)在n(1+x)的展开式中,若第3项与第6项系数相等,且n等于多少?(2)31nxxx的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大项。6.已知5025001250(23),xaaxaxax其中01250,,,aaaa是常数,计算220245013549()()aaaaaaaa7(数学选修2--3)第一章计数原理[综合训练B组]一、选择题1.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有()A.60个B.48个C.36个D.24个2.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A.1260B.120C.240D.7203.nN且55n,则乘积(55)(56)(69)nnn等于A.5569nnAB.1569nAC.1555nAD.1469nA4.从字母,,,,,abcdef中选出4个数字排成一列,其中一定要选出a和b,并且必须相邻(a在b的前面),共有排列方法()种.A.36B.72C.90D.1445.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为()A.120B.240C.280D.606.把10(3)ix把二项式定理展开,展开式的第8项的系数是()A.135B.135C.3603iD.3603i7.2122nxx的展开式中,2x的系数是224,则21x的系数是()A.14B.28C.56D.1128.在310(1)(1)xx的展开中,5x的系数是()A.297B.252C.297D.2078二、填空题1.n个人参加某项资格考试,能否通过,有种可能的结果?2.以1239,,,这几个数中任取4个数,使它们的和为奇数,则共有种不同取法.3.已知集合1,0,1S,1,2,3,4P,从集合S,P中各取一个元素作为点的坐标,可作出不同的点共有_____个.4.,nkN且,nk若11::1:2:3,nnnkkkCCC则nk______.5.511xx展开式中的常数项有6.在50件产品n中有4件是次品,从中任意抽了5件,至少有3件是次品的抽法共有______________种(用数字作答).7.2345(1)(1)(1)(1)(1)xxxxx的展开式中的3x的系数是___________8.1,2,3,4,5,6,7,8,9A,则含有五个元素,且其中至少有两个偶数的子集个数为_____.三、解答题1.集合A中有7个元素,集合B中有10个元素,集合AB中有4个元素,集合C满足(1)C有3个元素;(2)CAB(3)CB,CA求这样的集合C的集合个数.2.计算:(1)2973100100101CCA;(2)3333410CCC.9(3)11mnmnnmnmnnCCCC3.证明:11mmmnnnAmAA.4.求31(2)xx展开式中的常数项。5.从3,2,1,0,1,2,3,4中任选三个不同元素作为二次函数2yaxbxc的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?6.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种?10(数学选修2--3)第一章计数原理[提高训练C组]一、选择题1.若346nnAC,则n的值为()A.6B.7C.8D.92.某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为()A.230C220C146CB.555503020CCCC.514415030203020CCCCCD.322330203020CCCC3.6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A.2264CCB.22264233CCCAC.336AD.36C4.设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则TS的值为()A.20128B.15128C.16128D.211285.若423401234(23)xaaxaxaxax,则2202413()()aaaaa的值为()A.1B.1C.0D.26.在()nxy的展开式中,若第七项系数最大,则n的值可能等于()A.13,14B.14,15C.12,13D.11,12,137.不共面的四个定点到平面的距离都相等,这样的平面共有()A.3个B.4个C.6个D.7个8.由0,1,2,3,...,9十个数码和一个虚数单位i可以组成虚数的个数为()A.100B.10C.9D.9011二、填空题1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有种?2.在△AOB的边OA上有5个点,边OB上有6个点,加上O点共个点,以这12个点为顶点的三角形有个.3.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2yaxbxc的系数,,abc则可组成不同的函数_______个,其中以y轴作为该函数的图像的对称轴的函数有______个.4.若92axx的展开式中3x的系数为94,则常数a的值为.5.若2222345363,nCCCC则自然数n_____.6.若56711710mmmCCC,则8__________mC.7.50.991的近似值(精确到0.001)是多少?8.已知772127(12)oxaaaxax,那么127aaa等于多少?三、解答题1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种?(2)4个空位只有3个相邻的坐法有多少种?(3)4个空位至多有2个相邻的坐法有多少种?2.有6个球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?3.求54(12)(13)xx展开式中按x的降幂排列的前两项.124.用二次项定理证明2289nCn能被64整除nN.5.求证:0212(1)22nnnnnnCCnC
本文标题:高中数学选修2-3所有试卷含答案
链接地址:https://www.777doc.com/doc-3673243 .html