您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 课题学习.doc;利用不等关系分析比赛
课题学习:9.4利用不等关系分析比赛(一)教学内容分析:本课题学习是以学生喜爱的射击比赛、足球比赛为背景,引导学生分析、探究赛势中的不等关系,让学生经历数学建模的过程,从而达到锻炼逻辑思维的能力。学生在学习了一元一次不等式的解法和应用的基础上,将其应用于分析解决一些较为复杂的实际问题,进一步体会不等式在实际中的广泛应用。教学目标(一)学会运用不等式对一些体育比赛的胜负进行分析,了解部分体育比赛项目判定胜负的规则;探究实际问题中不等关系,能综合利用不等关系及所学知识解决实际问题。让学生感知生活离不开数学,学数学知识是更好地为解决实际问题服务。(二)过程与方法1、正确地进行分析,建立相应的数学模型,从而培养推理能力,激发学生对体育事业的关心和爱戴,对体育成绩的优劣与国民素质关系的理解,激发学生的爱国精神和主人翁意识。2、通过师生、生生互动,培养自主合作探究能力。(三)情感态度与价值观1、在利用不等关系分析比赛结果的过程中,提高分析问题,解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;2、体验数学的应用价值,培养用数学眼光看世界的意识,引导学生关心生活,关注社会;3、培养探索精神以及互相协作的态度。教学重点:利用不等关系分析预测比赛结果。教学难点:对实际问题背景的理解,如何将实际问题数学化。教学课时:共2课时教学过程:第1课时一、创设情境,导入新课同学们知道射击运动吗?自1900年第二届奥运会后,射击运动蓬勃发展,以后成为历届奥运会、世界锦标赛、亚运会的主要竞赛项目.早期的射击比赛,是对放飞的鸽子进行射击.2004年第28届雅典奥运会设了17个项目,共有390个运动员参加了比赛.射击运动百年来在稳步地进步,射击比赛的技术性在不断提高.二、师生互动,课堂探究(一)提出问题,引发讨论射击运动员的成绩如何确定?比赛规则怎样?(组织学生上网搜集资料)(二)导入知识,解释疑难1.射击运动的基本常识早期射击比赛,是对放飞的鸽子进行射击.竞赛项目包括飞碟项目、手枪项目和步枪项目.主要的武器有猎枪、手枪和步枪.步枪和手枪的标准靶由10个靶环构成,排列是从1环到10环,最外面的靶环为1分,靶心为10分.步枪射击属于慢射性质的项目,射击目标小,精度要求高,比赛时间长,比赛规则只限制射击总时间,无单发时间要求:射击时要求射手在不对称、不自然的姿势结构条件下,保持静止的协调力.2.想一想某射击运动员在一项比赛中前6次射击共中52环.如果他要打破89环(10次射击)的记录,第7次射击不能少于多少环?分析:由于这位运动员前6次射击共中了52环,要平记录还差89-52=37环,如果在第7次射击时成绩最差,那么第8、9、20次射击成绩必须是满分10环,因此在平记录时,第七次最差成绩为89-30-52=7环.如果第7次射击成绩超过7环,就有可能打破记录,如果射击成绩低于7环,不管以后3次射击情况如何都不可能打破记录.解:设第7次射击的成绩为x环,由于最后三次射击最多共中30环,要破记录则需52+x+3089x89-52-30x7因此,第7次射击不能少于8环才有可能破记录.3.议一议(1)如果第7次射击成绩为8环,最后三环射击中要有几次命中10环才能破记录?(2)如果第7次射击成绩为10环,最后三次射击中是否必须至少有一次命中10环才有可能破记录?点拨:(1)如果在第7次射击成绩为8环,要平记录最后三次射击要命中89-52-8=29环,如果要破记录,最后三次就至少要命中30环.因此最后三次射击每次要命中10环.(2)如果在第7次射击成绩为10环,要平记录,最后三次必须命中89-52-10=27环,若每次命中9环,只能平记录.要打破记录,必须有一次命中10环.4.做一做2004年8月22日,雅典奥运会的射击场上出现了最戏剧性的一幕.男子步枪3×40决赛还剩最后一枪未打,美国人埃蒙斯领先中国选手贾占波3环,位居第一.贾占波率先发枪10.1环.(1)埃蒙斯最后一枪为0环,谁获得了冠军;(2)埃蒙斯只要不打出低于多少环的成绩,就能将金牌收入囊中?(答案:(1)中国选手贾占波;(2)7.1环.(三)归纳总结,知识回顾这节课你的收获是什么?有何感想?实践活动:结合你经历过(或看过)的一次射击比赛,运用数学知识预测比赛结果,并写出简单的预测报告.第2课时一、创设情境,导入新课同学们观看过足球比赛吗?你听说过球星罗纳尔多吗?他出生于1976年,巴西人.他是全世界最优秀的球员之一,罗纳尔多的职业生涯经历了常人难以想象的坎坷.这名巴西球星在年纪轻轻的时候便成为了全世界年轻人的偶像.他在1996年和1997年连续两次被国际足联任命为世界足球先生,他也成为获此殊荣最年轻的人,也是第一个连续两个被世界足球先生的光环戴在自己头上的球星.二、师生互动,课堂探究(一)提出问题,引发讨论各种体育比赛不仅精彩纷呈,而且竞争激烈,参赛者的比赛成绩往往互相联系,此消彼长,对于比赛结果,经常要考虑问题中的不等关系,下列的问题就是这样的例子,你能得出这些问题的答案吗?(二)导入知识,解释疑难1.探究活动有A、B、C、D、E五个队分在同一小组进行单循环赛足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组结束后,A队的积分为9分.讨论:(1)A队的战绩是几胜几平几负?(2)如果小组中有一个队的战绩为全胜,A队能否出线?(3)如果小组中有一个队的积分为10分,A队能否出线?(4)如果小组中积分最高的队积9分,A队能否出线?相关链接:(Ⅰ)A、B、C、D、E五个队进行单循环比赛,各队都要进行4场比赛,并且甲对乙的比赛与乙对甲的比赛是同一场比赛,因此这个小组一共要进行=10场比赛.(Ⅱ)每场结果分出胜负的比赛,胜队得3分,负队得0分,两队得分的和为3分;如果每场结果为平局的比赛,则每队各得1分,两队得分的和为2分.(Ⅲ)足球小组赛按积分多少排列名次;积分相等的两队,净胜球数多的队名次在前,积分、净胜球数都相等的两队,进球数多的队名次在前.2.探究过程与结果设10场比赛后各队积分总和为n分,则n满足2×10≤n≤3×10,即20≤n≤30.(1)设A队积9分时胜x场,平y场(其中x、y均为比赛场数,为非负整数)则A队胜x场得3x分,平y场得y分,故3x+y=9①,而A队只进行了4场比赛,这4场比赛中也可能存在输的场数,因此x+y≤4②.由①得y=9-3x,把y=9-3x代入②中,得x+9-3x≤4,即-2x≤-5,故x≥,又x为非负整数且小于或等于4,∴x=3或4.当x=3时,y=0.当x=4时,y=-3(不合).因此,可以确定x=3,y=0,故A队积9分时它胜3场,平0场,但它比赛了4场,故有1场是负局,故A队积9分时,它3胜0平1负.(2)如果小组中有一个队的战绩为全胜,即它胜了4场,则这个队积分为4×3=12分,又因这个队全胜,则其它就不再有全胜的,因此这个队总分名次小组第一.为分析问题方便,不妨设这个队为B队,A队能否出线取决于C、D、E三队中是否有积分不少于9的队.由于A队积9分,它胜3场,负1场,负的这场正好是与B队交锋的结果,因此C、D、E三队都负于A队和B队.这样C、D、E三队积分最多的队只有积6分.故A队积9分时一定能出线.(3)如果小组比赛中有一队积10分,不妨设B队积10分,则设B队胜m场,平n场(m、n应为小于或等于4的非负整数),可得由①得n=10-3m③把③代入②,得m+10-3m≤4解得m≥3当m=3时,则n=1;当m=4时,则n=-2(不合舍去)因此B队积10分时,它的4场比赛3胜1平积10分.由于A队是3胜1负,B队3胜1平,因此A队是胜于C、D、E三队,而负于B队;B队是胜了A且胜了C、D、E三队中的两队,而与C、D、E三队中某一队打平.因此C、D、E三队中,积分的队2胜1平1负积7分.因此,A队稳出线.(4)当积分最高的队积9分时,设有x个队积9分,则9x≤30,x≤3,即x为整数,则积9分的队最多有3个队.因此当积9分的队有1个或2个时,A队一定出线;当积9分的队有3个时,A队能否出线,就要看它与其它两个积9分的队的净胜球数的多少.如果净胜球数位于第二,则A队可以出线;如果净胜数位于第三,则A队不能出线,假若A队的净胜球数与其它两个积9分的队净胜球数也相等,则看它们的进球数,进球最多的队名次在前,此时A队也不一定出线.3.再探究如果A队积10分,它能出线吗?当A队积10分时,它的战况是3胜1平,此时它战胜B、C、D、E四个队中的三个,与其中一个队战平,因此B、C、D、E四个队中战况最好的只有一个队3胜1平积10分,小组中名次在前的两个队出线,A队一定出线.4、巩固提高(1)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分。一个队打14场比赛负5场共得19分。那么这个队胜了几场?(2)某足协举办了一次足球比赛,计分规则为:胜一场得3分,平一场得1分,负一场得0分,若甲队比赛了5场一场未输,共积7分,则甲队平了A、2场B、3场C、4场D、5场(三)归纳总结,知识回顾本节课你得到何种收获?你有何体会?实践活动:结合你经历或从电视观看的一个小组足球赛,运用数学知识预测比赛结果,并写出简单的预测报告.作业布置1、(必做题)某校七年级(1)班计划把全班同学分成若干组开展数学探究性活动.如果每个组3人,则还余10人,如果每个组5人,则有一个组的学生数最多只有1个人,求该班在数学探究性活动中计划分的组数和该班的学生数.2、(选做1题)教科书149页复习题第10、11题.课后反思:
本文标题:课题学习.doc;利用不等关系分析比赛
链接地址:https://www.777doc.com/doc-3679698 .html