您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 2019年高考―圆锥曲线知识点总结
川越教育第1页2019年高考专题-圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F、2F的距离的和等于常数2a(大于21||FF)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若M为椭圆上任意一点,则有21||||2MFMFa。椭圆的标准方程为:22221xyab(0ab)(焦点在x轴上)或12222bxay(0ab)(焦点在y轴上)。注:①以上方程中,ab的大小0ab,其中222bac;②在22221xyab和22221yxab两个方程中都有0ab的条件,要分清焦点的位置,只要看2x和2y的分母的大小。例如椭圆221xymn(0m,0n,mn)当mn时表示焦点在x轴上的椭圆;当mn时表示焦点在y轴上的椭圆。(2)椭圆的性质①范围:由标准方程22221xyab知||xa,||yb,说明椭圆位于直线xa,yb所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(,)xy在曲线上时,点(,)xy也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y轴对称。若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。所以,椭圆关于x轴、y轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。在椭圆的标准方程中,令0x,得yb,则1(0,)Bb,2(0,)Bb是椭圆与y轴的两个交点。同理令0y得xa,即1(,0)Aa,2(,0)Aa是椭圆与x轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同时,线段21AA、21BB分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a;在22RtOBF中,2||OBb,2||OFc,22||BFa,且2222222||||||OFBFOB,即222cab;④离心率:椭圆的焦距与长轴的比cea叫椭圆的离心率。∵0ac,∴01e,且e越接近1,c就越接近a,从而b就越小,对应的椭圆越扁;反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆。当且仅当ab时,0c,两焦点重合,图形变为圆,方程为222xya。2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PFPFa)。注意:①式中是差的绝对值,在1202||aFF条件下;12||||2PFPFa时为双曲线的一支;21||||2PFPFa时为双曲线的另一支(含1F的一支);②当122||aFF时,12||||||2PFPFa表示两条射线;③当122||aFF时,12||||||2PFPFa不表示任何图形;④两定点12,FF叫做双曲线的焦点,12||FF叫做焦距。川越教育第2页椭圆和双曲线比较:椭圆双曲线定义1212||||2(2||)PFPFaaFF1212||||||2(2||)PFPFaaFF方程22221xyab22221xyba22221xyab22221yxab焦点(,0)Fc(0,)Fc(,0)Fc(0,)Fc注意:如何用方程确定焦点的位置!(2)双曲线的性质①范围:从标准方程12222byax,看出曲线在坐标系中的范围:双曲线在两条直线ax的外侧。即22ax,ax即双曲线在两条直线ax的外侧。②对称性:双曲线12222byax关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222byax的对称中心,双曲线的对称中心叫做双曲线的中心。③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线12222byax的方程里,对称轴是,xy轴,所以令0y得ax,因此双曲线和x轴有两个交点)0,()0,(2aAaA,他们是双曲线12222byax的顶点。令0x,没有实根,因此双曲线和y轴没有交点。1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。2)实轴:线段2AA叫做双曲线的实轴,它的长等于2,aa叫做双曲线的实半轴长。虚轴:线段2BB叫做双曲线的虚轴,它的长等于2,bb叫做双曲线的虚半轴长。④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。从图上看,双曲线12222byax的各支向外延伸时,与这两条直线逐渐接近。⑤等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:ab;2)等轴双曲线的性质:(1)渐近线方程为:xy;(2)渐近线互相垂直。注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。3)注意到等轴双曲线的特征ab,则等轴双曲线可以设为:)0(22yx,当0时交点在x轴,当0时焦点在y轴上。⑥注意191622yx与221916yx的区别:三个量,,abc中,ab不同(互换)c相同,还有焦点所在的坐标轴也变了。3.抛物线(1)抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程022ppxy叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(2p,0),它的准线方程是2px;川越教育第3页(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:pxy22,pyx22,pyx22.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程22(0)ypxp22(0)ypxp22(0)xpyp22(0)xpyp图形焦点坐标(,0)2p(,0)2p(0,)2p(0,)2p准线方程2px2px2py2py范围0x0x0y0y对称性x轴x轴y轴y轴顶点(0,0)(0,0)(0,0)(0,0)离心率1e1e1e1e说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p的几何意义:是焦点到准线的距离。(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F、2F的距离之和等于定长(大于12||FF)的点的轨迹叫做椭圆。这两个定点1F、2F叫做椭圆的焦点,两焦点的距离12||FF叫做椭圆的焦距。对椭圆定义的几点说明:(1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面);(2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分;(3)作为到这两个定点的距离的和的“常数”,必须满足大于|F1F2|这个条件。若不然,当这个“常数”等于|F1F2|时,我们得到的是线段F1F2;当这个“常数”小于|F1F2|时,无轨迹。这两种特殊情况,同学们必须注意。(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A1,A2,B1,B2,于是我们易得|A1A2|的值就是那个“常数”,且|B2F2|+|B2F1|、|B1F2|+|B1F1|也等于那个“常数”。同学们想一想其中的道理。oFxyloxyFlxyoFl川越教育第4页(5)中心在原点、焦点分别在x轴上,y轴上的椭圆标准方程分别为:22222222xyyx1(ab0),1(ab0),abab相同点是:形状相同、大小相同;都有ab0,222acb。不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c,0)和(c,0),第二个椭圆的焦点坐标为(0,-c)和(0,c)。椭圆的焦点在x轴上标准方程中x2项的分母较大;椭圆的焦点在y轴上标准方程中y2项的分母较大。(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222xy1(ab0)ab的有关性质中横坐标x和纵坐标y互换,就可以得出2222yx1(ab0)ab的有关性质。总结如下:几点说明:(1)长轴:线段12AA,长为2a;短轴:线段12BB,长为2b;焦点在长轴上。(2)对于离心率e,因为ac0,所以0e1,离心率反映了椭圆的扁平程度。川越教育第5页由于22221cabbeaaa,所以e越趋近于1,b越趋近于0,椭圆越扁平;e越趋近于0,b越趋近于a,椭圆越圆。(3)观察下图,22||,||OBbOFc,所以22||BFa,所以椭圆的离心率e=cos∠OF2B2知识点一:椭圆的定义第一定义:平面内一个动点P到两个定点1F、2F的距离之和为定值)2(2121FFaPFPF,这个动点P的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121FFPFPF,则动点P的轨迹为线段21FF;若)(2121FFPFPF,则动点P的轨迹不存在.知识点二:椭圆的标准方程1.当焦点在x轴上时,椭圆的标准方程:12222byax)0(ba,其中222bac2.当焦点在y轴上时,椭圆的标准方程:12222bxay)0(ba,其中222bac.注意:只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;在椭圆的两种标准方程中,都有)0(ba和222bac;椭圆的焦点总在长轴上.当焦点在x轴上时,椭圆的焦点坐标为)0,(c,)0,(c;当焦点在y轴上时,椭圆的焦点坐标为),0(c,),0(c;知识点三:椭圆的第二方程1.椭圆12222byax的参数方程sincosbyax(为参数)川越教育第6页2.椭圆的第二定义到F(c,0)的距离和到直线l:cax2的距离之比为常数ac(0ca)的点的轨迹为12222byax。3.焦半径P(0x,0y)在椭圆12222byax上,F1(c,0)、F2(c,0)为焦点0201exaPFexaPF例题讲解(三)直线与椭圆:直线l:0AxByC(A、B不同时为0)椭圆C:2222xy1(ab0)ab那么如何来判断直线和椭圆的位置关系呢?将两方程联立得方程组,通过方程组的解的个数来判断直线和椭圆交点的情况。方法如下:222201AxByCxyab消去y得到关于x的一元二次方程,化简后形式如下20(0)mxnxpm,24nmp(1)当0时,方程组有两组解,故直线与椭圆有两个交点;(2)当0时,方程组有一解,直线与椭圆有一个公共点(相切);(3)当0时,方程组无解,直线和椭圆没有公共点。注:当直线与椭圆有两个公共点时,设其坐标为1122(,),(,)AxyBxy,那么线段AB的长度(即弦长)为221212||()()ABxxyy,设直线的斜率为k,可得:221212||()[()]ABxxkxx2121||kxx,然后我们可通过求出方程的根或用韦达定理求出。[例1]求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P到两焦点的距离的和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-23,25);(3)焦
本文标题:2019年高考―圆锥曲线知识点总结
链接地址:https://www.777doc.com/doc-3688128 .html