您好,欢迎访问三七文档
TeknillisenkorkeakoulunmatematiikanlaitoksentutkimusraporttisarjaEspoo1999A404TOEPLITZPRECONDITIONINGOFTOEPLITZMATRICES—ANOPERATORTHEORETICAPPROACHJarmoMalinenTEKNILLINENKORKEAKOULUTEKNISKAHÖGSKOLANHELSINKIUNIVERSITYOFTECHNOLOGYTECHNISCHEUNIVERSITÄTHELSINKIUNIVERSITEDETECHNOLOGIED’HELSINKI(insideofthefrontcover,nottobeprinted)TeknillisenkorkeakoulunmatematiikanlaitoksentutkimusraporttisarjaEspoo1999A404TOEPLITZPRECONDITIONINGOFTOEPLITZMATRICES—ANOPERATORTHEORETICAPPROACHJarmoMalinenHelsinkiUniversityofTechnologyDepartmentofEngineeringPhysicsandMathematicsInstituteofMathematicsJarmoMalinen:ToeplitzPreconditioningofToeplitzMatrices anOperatorTheoreticApproach;HelsinkiUniversityofTechnologyInstituteofMathematicsResearchReportsA404(1999).Abstract:WestudythepreconditioningofToeplitzmatricesTn[f]bysomeotherToeplitzmatrices.Wedividethepreconditionedmatrixintotwoparts.Oneofthesepartshasasingularvaluedecaythatdependsonthesmoothnessofthesymbolf.Theremainingpartisregardedaspreconditioningerror,andithasthestructureofToeplitzmatrix.Weindicatethatthepreconditionerscanbegeneratedbyamultitudeofapproximationtheoreticmethodsapplieduponthesymbolofsuchsystem.Moreover,theToeplitzpreconditioningerrorcanbemadearbitrarilysmallifthedegreeofpreconditioningisincreased.OurresultsshowthattheKrylovsubspacemethods(suchasGMRESorCG)willperforminitiallyatsuperlinearspeedwhenapplieduponsuchprecondi-tionedsystem.TheconnectionbetweensmoothnessofthesymbolfandthenumericalpropertiesofmatricesTn[f]withincreasingnispresented.AMSsubjectclassi cations:65T10,65T20,47B35.Keywords:Toeplitzoperator,Krylovsubspacemethods,preconditioning,speedestimate,superlinear,linear.ISBN951-22-4354-7ISSN0784-3143Edita,Espoo,1999HelsinkiUniversityofTechnologyDepartmentofEngineeringPhysicsandMathematicsInstituteofMathematicsP.O.Box1100,02015HUT,Finlandemail:math@hut. downloadables: /author’semail:31IntroductionAstandardlineofattackinthesolutionoflinearsystemsisthefollowing:First,the biglines oftheproblemareinvestigated,sothataroughapprox-imationoftheinverseoperator,calledpreconditioner,canbefound.Theapplicationofapreconditionereliminatesthe largeamountofdisorder intheproblem.Asuccessfullypreconditionedlinearoperatoris,insomeap-propriatesense, almost anidentityoperator.The remainingdisorder iseliminatedbyvariousiterativeprocedures(Krylovsubspacemethods,suchasCGofGMRES),possiblyusingparallelcomputationtechniques.Inthispaper,weapplytheseideastoaspecialclassofmatrices,namelyToeplitzma-trices.ItseemsthatToeplitzmatricesappearpracticallythroughoutalltheappliedmathematics.Forexample,theyareusedinthenumericalsolutionofconvolutiontypeequationswhentheyapproximateanin nitedimensionalobject(e.g.Toeplitzoperator),see[6].Letusconsidersomerequirementsthatagoodpreconditionershouldhave.Inpractice,thepreconditioningcanbedoneeitherbeforeorafterthediscretizationoftheproblem.Inthe rstway,thepreconditioningisdonetotheoriginal(in nitedimensional)operatorabstractly onapieceofpaper ,andtheiteratorsoftwareworkswith(a nitedimensionaldiscretizationof)thepreconditionedoperator.Fortheparallelimplementationoftheiteratortobee ective,thepreconditionedoperatorshould,insomesense,beeasily decomposable intosmaller blocks thatdonotcommunicatetoomuchwitheachother;thereaderisinstructedtothinkofthestructuresthatresemblethedecompositionofacompactoperatorintoitsgeneralizedeigenspaces.Itisalsoclearthattheiterationofthe blocks shouldconvergefastforagoodpreconditioner.Thesecondwaytopreconditionisthefollowing:Thein nitedimensionalproblemisdiscretized rst,andthenthe nitedimensionalmatrixofthedis-cretizedproblemispreconditioned.Nowthepreconditionedmatrixwouldnotnecessarilyexistsinthememoryofthecomputer,becausethiswouldrequireanumericalcomputationofamatrix-matrixproduct.Instead,thepreconditionerisappliedinsideeachiterationloopoverandoveragain,sothatonlymatrix-vectorproductsarecalculatedbythecomputersoftware.Itisnowdesirablethatthepreconditioner-vectorproductisnumericallycon-venient.In1986,G.Strang[14]proposedthatacirculantToeplitzprecondi-tionercouldbeappliedonToeplitzmatrices.Aniterativeconjugategradientmethod(CG)isthenusedtocompletetheinversion.SeveralotherclassesofToeplitzpreconditionershavebeenstudiedbymanyauthors;bandToeplitzpreconditionersforsystemswithpositivesymbols[1],circulantToeplitzpre-conditionersassociatedtoconvolutionkernels[3],circulantToeplitzprecon-ditionerswithcomplexsymbols[4],preconditionersarisingfrom inversesym-bol [2],tomentionfew.Thecommonfoundationforalltheseapproachesisthepossibilityofcal-culatingtheToeplitz-vectorproductinnlogntimebyFFT,wherenisthe4dimensionofthematrix(regardedasthelevelofdiscretizationiftheoriginalproblemisin nitedimensional).Itfollowsthatthecalculationofasingleit-erationstepforaToeplitzsystemisfast,buttheconvergenceoftheiterationispoor,withoutproperpreconditioning.Becauseofthementionednlogncomplexityproperty,itseemsacomputationallyattractivealternativetouseaToeplitzmatrixasapreconditionertoaToeplitzsystem.Ofcourse,iftheiterationofthepreconditionedsystemw
本文标题:TOEPLITZ PRECONDITIONING OF TOEPLITZ MATRICES ― AN
链接地址:https://www.777doc.com/doc-3692376 .html