您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 中考专题复习——平面直角坐标系与函数
中考专题复习第三章函数及其图象第十一讲:平面直角坐标系与函数【基础知识回顾】一、平面直角坐标系:1、定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A(a.b),(a.b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系。3、平面内点的坐标特征①P(a.b):第一象限第二象限第三象限第四象限X轴上Y轴上②对称点:P(a,b)③特殊位置点的特点:P(a.b)若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④到坐标轴的距离:P(a.b)到x轴的距离到y轴的距离到原点的距离⑤坐标平面内点的平移:将点P(a.b)向左(或右)平移h个单位,对应点坐标为(或),向上(或下)平移k个单位,对应点坐标为(或)。【名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论。】二、确定位置常用的方法:一般由两种:1、2、。三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量。【名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同情况下可以是常量,也可能是变量,要根据问题的条件来确定。】2、函数:⑴、函数的概念:一般的,在某个过程中如果有两个变量x、y,如果对于x的每一个确定的值,y都有的值与之对应,我们就成x是,y是x的。⑵、自变量的取值范围:主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况关于y轴的对称点关于y轴的对称点关于原点的对称点②、实际问题有意义的条件:必须符合实际问题的背景⑶、函数的表示方法:通常有三种表示函数的方法:①、法②、法③、法⑷、函数的同象:对于一个函数,把自变量x和函数y的每对对应值作为点的与在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象【名师提醒:1、在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开方数应同时分母应。2、函数的三种表示方法应根据实际需要选择,有时需同时使用几种方法3、函数同象是在自变量取值范围内无限个点组成的图形,图象上任意一点的坐标是解析式方程的一个解,反之满足解析式方程的每一个解都在函数同象上】【重点考点例析】考点一:平面直角坐标系中点的特征例1(2016•淄博)如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限(点P的纵坐标一定大于横坐标,∴点P一定不在第四象限).对应训练1.(2016•宁夏)点P(a,a-3)在第四象限,则a的取值范围是.考点二:规律型点的坐标例2(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.(2013•江都市一模)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)考点三:函数自变量的取值范围例3(2016•常德)函数y=31xx中自变量x的取值范围是()A.x≥-3B.x≥3C.x≥0且x≠1D.x≥-3且x≠1对应训练3.(2016•泸州)函数y=13xx自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3考点四:函数的图象例4(2016•重庆)2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是()A.B.C.D.对应训练4.(2016•湘西州)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A.B.C.D.考点四:动点问题的函数图象例5(2016•烟台)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=45C.当0<t≤10时,y=25t2D.当t=12s时,△PBQ是等腰三角形思路分析:由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD-ED=BC-ED=10-4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=12BC•EF=12×10×EF,∴EF=8,∴sin∠EBC=EFBE=84105;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=12BQ•PG=12BQ•BP•sin∠EBC=12t•t•45=25t2.(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=82,NC=217,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.对应训练5.(2016•铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是()A.B.C.D.5.D【聚焦山东中考】1.(2016•东营)若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.(2016•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多3.(2016•潍坊)用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A.B.C.D.4.(2016•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)4.(2n,1)5.(2016•东营)如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2013的坐标为.5.(0,42013)或(0,24026)(注:以上两答案任选一个都对)6.(2016•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.6.B【备考真题过关】一、选择题1.(2016•湛江)在平面直角坐标系中,点A(2,-3)在第()象限.A.一B.二C.三D.四2.(2016•邵阳)如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)3.(2016•邵阳)函数y=51x中,自变量x的取值范围是()A.x>1B.x<1C.x≥15D.x≥-154.(2016•郴州)函数y=23x中自变量x的取值范围是()A.x>3B.x<3C.x≠3D.x≠-35.(2016•资阳)在函数y=11x中,自变量x的取值范围是()A.x≤1B.x≥1C.x<1D.x>16.(2016•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.7.(2016•乌鲁木齐)某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时8.(2016•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.9.(2016•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.10.(2016•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0B.1C.2D.311.(2016•三明)如图,在矩形ABCD中,O是对角线AC的中点,动点P从点C出发,沿DC方向匀速运动到终点C.已知P
本文标题:中考专题复习——平面直角坐标系与函数
链接地址:https://www.777doc.com/doc-3726914 .html