您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 三角形全等的判定(角边角和角角边)
12.2.3三角形全等的判定(ASA和AAS)1.什么样的图形是全等三角形?2.判定两个三角形全等要具备什么条件?边边边:三边对应相等的两个三角形全等。边角边:有两边和它们夹角对应相等的两个三角形全等复习引入sssSAS一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B(即使两角和它们的夹边对应相等)。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?探究1BAC有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。探究反映的规律是:角边角判定定理∠A=∠D(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)几何语言表示ABCDEF例1:已知如图,O是AB的中点,∠A=∠B,ABCDO12∵O是AB的中点(已知)∴OA=OB(中点定义)求证:△AOC≌△BOD在△AOC和△BOD中证明:∠A=∠BOA=OB∠1=∠2(已知)(已证)(对顶角相等)∴△AOC≌△BOD(ASA)例2:已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C求证:AD=AE.BAECDO证明:在△ADC和△AEB中∠A=∠AAC=AB∠C=∠B(公共角)(已知)(已知)∴△ADC≌△AEB(ASA)∴AD=AE又∵AB=AC∴BD=CE(全等三角形的对应边相等)(已知)(等式性质1)BD=CE吗?利用“角边角”可知,带第(2)块去,可以配到一个与原来全等的三角形玻璃。(1)(2)在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEFABCDEF已知∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E又∵∠C=180°-∠A-∠B,∠F=180°-∠D-∠E∴∠C=∠F在△ABC和△DEF中∠B=∠EBC=EF∠C=∠F∴△ABC≌△DEF(ASA)两角和它们其中一角的对边对应相等的两个三角形全等.(简写为“角角边”或“AAS”)在△ABC与△DEF中∴△ABC≌△DEF(AAS)几何语言∠A=∠D∠B=∠EBC=EFABCDEF例2、已知如图,∠1=∠2,∠C=∠D求证:AD=AC.1ABDC2证明:在△ABD和△ABC中∠1=∠2∠D=∠CAB=AB∴△ABD≌△ABC(AAS)∴AD=AC变式1:已知如图,∠1=∠2,∠ABD=∠ABC求证:AD=AC.1ABDC2证明:在△ABD和△ABC中∠1=∠2AB=AB∠ABD=∠ABC∴△ABD≌△ABC(ASA)∴AD=AC变式2:已知如图,∠1=∠2,∠3=∠4求证:AD=AC.1ABDC234证明:∵∠3=∠4∴∠ABD=∠ABC在△ABD和△ABC中∠1=∠2AB=AB∠ABD=∠ABC∴△ABD≌△ABC(ASA)∴AD=AC为什么?等角的补角相等或等式性质1练习1.如图,填什么就有△AOC≌△BOD∠A=∠B(已知)AC=BD(已知)∠C=∠D(已知)∴△AOC≌△BOD(ASA)OACDB在△AOC和△BOD中2.如图,∠A=∠B(已知)∠AOC=∠BOD(对顶角相等)CA=DB(已知)∴△ADC≌△BOD(AAS)在△AOC和△BOD中OACDB小测:如图,AB⊥BC,AD⊥DC,∠1=∠2。求证AB=AD。ABCD12知识应用2.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长。为什么?ABCDEF1.你能总结出我们学过哪些判定三角形全等的方法吗?2.要根据题意选择适当的方法。3.证明线段或角相等,可以证明它们所在的两个三角形全等。注意角角边、角边角中两角与边的区别再见!
本文标题:三角形全等的判定(角边角和角角边)
链接地址:https://www.777doc.com/doc-3728057 .html