您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 三角形全等的判定:角边角、角角边
居安思危——洪水未到先筑堤,豺狼未来先磨刀.一只野狼卧在草上勤奋地磨牙,狐狸看到了,就对它说:天气这么好,大家在休息娱乐,你也加入我们队伍中吧!野狼没有说话,继续磨牙,把它的牙齿磨得又尖又利.狐狸奇怪地问道:森林这么静,猎人和猎狗已经回家了,老虎也不在近处徘徊,又没有任何危险,你何必那么用劲磨牙呢?野狼停下来回答说:我磨牙并不是为了娱乐,你想想,如果有一天我被猎人或老虎追逐,到那时,我想磨牙也来不及了.而平时我就把牙磨好,到那时就可以保护自己了.温馨提示:做事应该未雨绸缪,居安思危,这样在危险突然降临时,才不至于手忙脚乱.书到用时方恨少,平常若不充实学问,临时抱佛脚是来不及的.也有人抱怨没有机会,然而当升迁机会来临时,再叹自己平时没有积蓄足够的学识与能力,以致不能胜任,也只好后悔莫及三角形全等判定方法用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)知识回顾:FEDCBAAC=DF∠C=∠FBC=EF知识回顾:DCBAABDABCABDABCSSA不能判定全等1.若AB=AC,则添加一个什么条件可得△ABD≌△ACD?△ABD≌△ACDAB=ACABDC∠BAD=∠CADSASAD=AD继续探讨三角形全等的条件:两角一边思考:已知一个三角形的两个角和一条边,那么两个角与这条边的位置上有几种可能性呢?ABCABC图1图2在图1中,边AB是∠A与∠B的夹边,在图2中,边BC是∠A的对边,我们称这种位置关系为两角夹边我们称这种位置关系为两角及其中一角的对边。观察下图中的△ABC,画一个△ABC,使AB=AB,∠A=∠A,∠B=∠B结论:两角及夹边对应相等的两个三角形全等(ASA).′′′′′′′观察:△ABC与△ABC全等吗?怎么验证?画法:1.画AB=AB;2.在AB的同旁画∠DAB=∠A,∠EBA=∠B,AD、BE交于点C′′′′′′′′′ACBA′EDCB′′′思考:这两个三角形全等是满足哪三个条件?′′′′′探索1如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠AAB=AB∴△ABC≌△A’B’C’(ASA)ACBA′CB′′′′′′′′∠B=∠B′两角及夹边对应相等的两个三角形全等(ASA).在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?为什么?ACBEDF探索2分析:能否转化为ASA?证明:∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F(三角形内角和定理)∠B=∠E在△ABC和△DEF中BC=EF∠C=∠F∴△ABC≌△DEF(ASA)你能从上题中得到什么结论?两角及一角的对边对应相等的两个三角形全等(AAS)。如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠A∴△ABC≌△A’B’C’(AAS)ACBA′CB′′′′′′∠B=∠B′′′BC=BC两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”(ASA)(AAS)两个三角形全等的判定方法下列条件能否判定△ABC≌△DEF.(1)∠A=∠EAB=EF∠B=∠D(2)∠A=∠DAB=DE∠B=∠E试一试请先画图试试看如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?怎么办?可以帮帮我吗?AB利用“角边角定理”可知,带B块去,可以配到一个与原来全等的三角形玻璃。考考你1、如图,已知AB=DE,∠A=∠D,,∠B=∠E,则△ABC≌△DEF的理由是:2、如图,已知AB=DE,∠A=∠D,,∠C=∠F,则△ABC≌△DEF的理由是:ABCDEF角边角(ASA)角角边(AAS)例1、如图,AB=AC,∠B=∠C,那么△ABE和△ACD全等吗?为什么?证明:在△ABE与△ACD中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)∴△ABE≌△ACD(ASA)AEDCB1.如图,AD=AE,∠B=∠C,那么BE和CD相等么?为什么?证明:在△ABE与△ACD中∠B=∠C(已知)∠A=∠A(公共角)AE=AD(已知)∴△ABE≌△ACD(AAS)∴BE=CD(全等三角形对应边相等)AEDCB变一变BE=CD你还能得出其他什么结论?O例2.如图,O是AB的中点,=,与全等吗?为什么?ABAOCBODOABCD两角和夹边对应相等ABCDO1234如图:已知∠ABC=∠DCB,∠3=∠4,求证:(1)△ABC≌△DCB。(2)∠1=∠2例3练习1已知:如图,AB=A′C,∠A=∠A′,∠B=∠C求证:△ABE≌△A′CD________()________()________()证明:在和中∴△____≌△____()CDA'ABE∠A=∠A’已知AB=A’C已知∠B=∠C已知ABEA’CDASA△ABE△A’CD1、如图:已知AB∥DE,AC∥DF,BE=CF。求证:△ABC≌△DEF。ABCDEF考考你证明:∵BE=CF(已知)∴BC=EF(等式性质)∠B=∠E在△ABC和△DEF中BC=EF∠C=∠F∴△ABC≌△DEF(ASA)∵AB∥DEAC∥DF(已知)∴∠B=∠DEF,∠ACB=∠FABCDEF1、如图∠ACB=∠DFE,BC=EF,那么应补充一个条件-------------------------,才能使△ABC≌△DEF(写出一个即可)。∠B=∠E或∠A=∠D或AC=DF你能吗?(ASA)(AAS)(SAS)AB=DE可以吗?×AB∥DE拓展1.根据题目条件,判别下面的两个三角形是否全等,并说明理由.(不全等,因为BC虽然是公共边,但不是对应边。)∠A=∠D,∠B=∠F,_________;∠A=∠D,AB=DE,_________;2.要使下列各对三角形全等,需要增加什么条件?(1)(2)3.已知:如图,△ABC≌△A’B’C’,AD、A’D’分别是△ABC和△A’B’C’的高。试说明AD=A’D’,并用一句话说出你的发现。ABCDA’B’C’D’全等三角形对应边上的高也相等。4、△ABC是等腰三角形,AD、BE分别是∠A、∠B的角平分线,△ABD和△BAE全等吗?试说明理由.∵△ABC是等腰三角形∴AC=BC∠A=∠B又∵AD、BE分别是∠A、∠B的角平分线解∴∠BAD=∠A∠ABE=∠B2121∴∠BAD=∠ABE∵∠BAD=∠ABE∠EAB=∠DBAAB为公共边∴△ABD≌△BAE(A.S.A)(1)两角和它们的夹边对应相等的两个三角形全等.简写成“角边角”或“ASA”.(2)两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.知识要点:(3)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径。
本文标题:三角形全等的判定:角边角、角角边
链接地址:https://www.777doc.com/doc-3728060 .html