您好,欢迎访问三七文档
当前位置:首页 > 资格认证/考试 > 专升本考试 > 高等数学课件D7_2点积叉积
2/22/2020高等数学*三、向量的混合积第二节一、两向量的数量积二、两向量的向量积机动目录上页下页返回结束数量积向量积*混合积第七章2/22/2020高等数学1M一、两向量的数量积沿与力夹角为的直线移动,W1.定义设向量的夹角为,称记作数量积(点积).引例.设一物体在常力F作用下,位移为s,则力F所做的功为cossFsFW2Mba的与为baba,s机动目录上页下页返回结束2/22/2020高等数学上的投影为在ab记作故,0,时当同理b2.性质为两个非零向量,则有bajrPbbabaajrPaa)1(ba,)2(0ba0ba则0,0ba机动目录上页下页返回结束2/22/2020高等数学3.运算律(1)交换律(2)结合律)(ba)()(ba)(ba)(ba(3)分配律事实上,当0c时,显然成立;时当0cc)(bababcjrPacjrPcbabacjrPccbaccjrPjrPacjrPcbcjrPccacb)(jrPbac机动目录上页下页返回结束2/22/2020高等数学ABCabc例1.证明三角形余弦定理cos2222abbac证:则cos2222abbac如图.设,aBC,bACcBA2c)()(babaaabbba22a2bcos2baccbbaa,,机动目录上页下页返回结束2/22/2020高等数学4.数量积的坐标表示设则0zzyyxxbababa当为非零向量时,coszzyyxxbababa222zyxaaa222zyxbbb由于cosba,kajaiaazyx,kbjbibbzyx)(kajaiazyx)(kbjbibzyxjikjikbaba两向量的夹角公式,得机动目录上页下页返回结束2/22/2020高等数学)(MB,)(MABM例2.已知三点,)2,1,2(),1,2,2(,)1,1,1(BAMAMB.A解:,1,10,1,01则AMBcos10022AMB求MBMAMAMB故机动目录上页下页返回结束2/22/2020高等数学为).求单位时间内流过该平面域的流体的质量P(流体密度例3.设均匀流速为的流体流过一个面积为A的平面域,与该平面域的单位垂直向量A解:单位时间内流过的体积PA的夹角为且vvnv为单位向量机动目录上页下页返回结束2/22/2020高等数学二、两向量的向量积引例.设O为杠杆L的支点,有一个与杠杆夹角为OQOLPQ符合右手规则OQFFsinOPsinOPMFOPOPMM矩是一个向量M:的力F作用在杠杆的P点上,则力F作用在杠杆上的力FoPFMFM机动目录上页下页返回结束2/22/2020高等数学1.定义定义向量方向:(叉积)记作且符合右手规则模:向量积,,的夹角为设ba,c,acbccsinabbac称c的与为向量babacba引例中的力矩思考:右图三角形面积abS=机动目录上页下页返回结束2/22/2020高等数学2.性质为非零向量,则,0sin或即0aa)1(0ba,)2(0baba∥,0,0时当baba∥0basinab03.运算律(2)分配律(3)结合律(证明略)abcba)(cbcaba)()(ba)(baba)1(证明:机动目录上页下页返回结束2/22/2020高等数学)(kajaiazyx)(kbjbibzyx4.向量积的坐标表示式设则,kajaiaazyx,kbjbibbzyx)(iibaxxibabayzzy)(jbabazxxz)(kbabaxyyx)()(jjbayy)(kkbazzijk机动目录上页下页返回结束2/22/2020高等数学向量积的行列式计算法kjixayazaxbybzb,zxzxbbaaibabayzzy)(jbabazxxz)(kbabaxyyx)(kajaiaazyxkbjbibbzyx(行列式计算见P339~P342)机动目录上页下页返回结束2/22/2020高等数学例4.已知三点,)7,4,2(),5,4,3(,)3,2,1(CBA角形ABC的面积解:如图所示,CBASABC21kji222124)(21,4,622222)6(42114sin21ABAC21ACAB求三机动目录上页下页返回结束2/22/2020高等数学一点M的线速度例5.设刚体以等角速度绕l轴旋转,导出刚体上的表示式.Ml解:在轴l上引进一个角速度向量使a其在l上任取一点O,O作它与则点M离开转轴的距离a且符合右手法则的夹角为,sinr,,rv方向与旋转方向符合右手法则,向径机动目录上页下页返回结束2/22/2020高等数学*三、向量的混合积1.定义已知三向量称数量混合积.记作几何意义为棱作平行六面体,底面积高h故平行六面体体积为hAVcba)(cba,,,cba的为cba,,,Abaccba,,以则其cba)(cbabacba机动目录上页下页返回结束2/22/2020高等数学zyxzyxbbbaaaxcyczckji2.混合积的坐标表示设xayazaxbybzbzxzxbbaayxyxbbaacba)(ba,),,(zyxaaaacbazyzybbaa,),,(zyxbbbb),,(zyxcccc,zyzybbaa,zxzxbbaayxyxbbaaxcyczc机动目录上页下页返回结束2/22/2020高等数学3.性质(1)三个非零向量共面的充要条件是0(2)轮换对称性:][(可用三阶行列式推出)cbacba,,abc][abc][abcabc机动目录上页下页返回结束2/22/2020高等数学例6.已知一四面体的顶点4),求该四面体体积.1A2A3A4A解:已知四面体的体积等于以向量为棱的平行六面体体积的故6112xx12yy12zz13xx13yy13zz14xx14yy14zz,21AA,31AA41AA][413121AAAAAA机动目录上页下页返回结束2/22/2020高等数学例7.证明四点,)3,3,2(),6,5,4(,)1,1,1(CBA共面.解:因0)17,15,10(DABCD34512291416故A,B,C,D四点共面.][ADACAB机动目录上页下页返回结束2/22/2020高等数学内容小结设1.向量运算加减:数乘:点积:),,(zzyyxxbabababa),,(zyxaaaazzyyxxbabababa),,(,),,(,),,(zyxzyxzyxccccbbbbaaaa叉积:kjixayazaxbybzbba机动目录上页下页返回结束2/22/2020高等数学混合积:2.向量关系:xxabyyabzzab0zzyyxxbababazyxzyxzyxcccbbbaaacba)(cba共面cba,,0zyxzyxzyxcccbbbaaa0)(cba机动目录上页下页返回结束0ba2/22/2020高等数学思考与练习1.设计算并求夹角的正弦与余弦.)3,1,1(,321cos1211sin答案:2.用向量方法证明正弦定理:CcBbAasinsinsinba,,1baba,,2jibkjia,baba及BabcAC机动目录上页下页返回结束2/22/2020高等数学证:由三角形面积公式AcbsinBacsinBbAasinsin所以CcsinCbasin因BabcACABACSABC21BCBA21CACB21ABACCACB机动目录上页下页返回结束2/22/2020高等数学作业P3103,4,6,7,9(1);(2),10,12第三节目录上页下页返回结束2/22/2020高等数学22343cos322)2(17备用题1.已知向量的夹角且解:,43ba,,2||a,3||b)()(babaaabb22cos2bbaa17ba机动目录上页下页返回结束2/22/2020高等数学22200)2(211ABCD在顶点为三角形中,,)2,1,1(A)0,1,1(B的和)1,3,1(C求AC边上的高BD.解:)3,4,0(AC,5)3(422||AC)2,2,0(AB三角形ABC的面积为||21ABACS21S||AC||BD5211||BD52||BD2.而故有机动目录上页下页返回结束
本文标题:高等数学课件D7_2点积叉积
链接地址:https://www.777doc.com/doc-3729799 .html