您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学必修3第一章《统计》小结与复习课件
1本章小结与复习课统计高中数学必修3第一章统计2统计知识点1、抽样方法。(1)简单随机抽样(2)系统抽样(3)分层抽样2表示数据的方法(1)扇形图(2)条形图(3)折线图(4)茎叶图3、样本分布估计总体分布(1)频率分布表(2)直方图4、样本特征数估计总体特征数(1)平均数(2)方差(3)众数(4)中位数5、线性回归方程。3总体、个体、样本、样本容量总体:在统计中,所有考察对象的全体。个体:总体中的每一个考察对象。样本:从总体中抽取的一部分个体叫做这个总体的一个样本。样本容量:样本中个体的数目。4抽样方法:(1)简单随机抽样(抽签法、随机数法)(2)系统抽样(3)分层抽样51、抽签法步骤(1)先将总体中的所有个体(共有N个)编号(号码可从0到N-1).(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作。(3)将这些号签放在同一个容器中,搅拌均匀。(4)抽签时,每次从中抽出一个号签,连续抽取n次。(5)抽出样本。62、随机数表法步骤(1)将总体中的个体编号(编号时位数要一样);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本73.系统抽样步骤:(1)编号,随机剔除多余个体,重新编号(2)分段(段数等于样本容量)样本距k=N/n(3)抽取第一个个体编号为i(i=k)(4)依预定的规则抽取余下的个体编号为i+k,i+2k,…8例题某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。9[分析]按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号。解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。104.分层抽样步骤:(1)将总体按一定标准分层;(2)计算各层的个体数与总体的个体数的比;抽样比k=n/N(3)按比例确定各层应抽取的样本数目(4)在每一层进行抽样(可用简单随机抽样或系统抽样)11类别抽样方式使用范围共同点相互联系简单随机抽样从总体中逐个抽取总体中个体数较少时抽样过程中每个个体被抽取的可能性相同系统抽样分段按规则抽取总体中个体数较多时在第一段中采用简单随机抽样分层抽样分层按各层比例抽取总体中个体差异明显时各层中抽样时采用前两种方式12分析样本,估计总体几个公式样本数据:nxxx,,,21nxxxxn21平均数:标准差:nxxxxssn2212)()(13分析样本的分布情况可用样本的频率分布表样本的频率分布直方图频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势。(2)从频率分布直方图得不出原始的数据内容,每个小矩形的面积等于此项的概率,所有面积和为1.14做样本频率分布直方图的步骤:(1)决定组距与组数;(组数=极差/组距)(2)将数据分组;(3)列频率分布表(分组,频数,频率);(4)画频率分布直方图。15例1:下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)人数5810223320区间界限[146,150)[150,154)[154,158)人数1165(1)列出样本频率分布表﹔(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.。分析:根据样本频率分布表、频率分布直方图的一般步骤解题。16解:(1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158)50.04合计120117(2)其频率分布直方图如下122126130134138142146150158154身高(cm)o0.010.020.030.040.050.060.07频率/组距(3)由样本频率分布表可知身高小于134cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.18变量间的相互关系基础知识框图表解变量间关系函数关系相关关系非相关关系线性相关非线性相关散点图线形回归线形回归方程19变量间的相互关系基础知识框图表解变量间关系函数关系相关关系非相关关系线性相关非线性相关散点图线形回归线形回归方程20重点知识回顾1、相关关系(1)概念:两个变量之间是不确定的随机关系,但两个变量之间又有关系,称为相关关系。(2)相关关系与函数关系的异同点。相同点:两者均是指两个变量间的关系。不同点:函数关系是一种确定关系,是一种因果系;相关关系是一种非确定的关系,也不一定是因果关系(但可能是伴随关系)。(3)相关关系的分析方向。在收集大量数据的基础上,利用统计分析,发现规律,对它们的关系作出判断。212、回归直线方程(1)回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)最小二乘法求线性回归方程的步骤:1.列表、计算2.代入公式求a,b。3.写出直线方程。(3)利用回归直线对总体进行估计22小结:统计.这一部分内容,可以看成是初中“统计初步”和高中必修课“概率”这两章内容的深入和扩展,它属于统计的基础知识,从总的方面来看,研究了两个基本问题:一是如何从总体中抽取样本;二是如何对抽取的样本进行计算与分析,并据此对总体的相应情况作出判断.要领会思想方法的实质,这样才能达到事半功倍的效果奎屯王新敞新疆
本文标题:高中数学必修3第一章《统计》小结与复习课件
链接地址:https://www.777doc.com/doc-3730507 .html