您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018年中考数学精品专题26三角形
2018年中考数学备考精品考点二十六:三角形聚焦考点☆温习理解一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。③证明线段不等关系。学科!网3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。推论:①直角三角形的两个锐角互余。②三角形的一个外角等于和它不相邻的来两个内角的和。③三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。二、全等三角形1、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。[来源:Zxxk.Com]直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)2.全等三角形的性质:三、等腰三角形1、等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60°。2、等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。3、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。名师点睛☆典例分类考点典例一、三角形的性质【例1】(2017郴州第8题)小明把一副45,30的直角三角板如图摆放,其中00090,45,30CFAD,则等于()A.0180B.0210C.0360D.0270【答案】B.考点:三角形的外角的性质.【点睛】本题考查了三角形的外角的性质,利用三角形的外角的性质:三角形的外角等于和它不相邻的两个内角的和,可解决有关角的计算问题.【例2】(2017贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.6【答案】A.【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=12×△ABE的面积=14×△ABD的面积=18×△ABC的面积=32,同理可得△AEG的面积=32,△BCE的面积=12×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=14×△BCE的面积=32,∴△AFG的面积是32×3=92,[来源:学+科+网Z+X+X+K]故选:A.考点:三角形中位线定理;三角形的面积.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.【举一反三】1.(2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°2.(2017湖南张家界第5题)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A.6B.12C.18D.24考点典例二、等腰三角形【例3】(2017湖北武汉第10题)如图,在RtABC中,90C,以ABC的一边为边画等腰三角形,使得它的第三个顶点在ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【答案】C【解析】故选C.考点:等腰三角形.【点睛】本题考查了画等腰三角形;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.【举一反三】1.(2017海南第13题)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.62.(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cmB.14cmC.13cm或14cmD.以上都不对考点典例三、全等三角形【例4】(2017湖南怀化第15题)如图,ACDC=,BCEC=,请你添加一个适当的条件:,使得ABCDEC△≌△.学科+网【答案】CE=BC.本题答案不唯一.【解析】试题解析:添加条件是:CE=BC,在△ABC与△DEC中,ACDCBCECCEBC,∴△ABC≌△DEC.故答案为:CE=BC.本题答案不唯一.点:全等三角形的判定.【点睛】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.【举一反三】(2017湖南怀化第6题)如图,点,,,CFEB在一条直线上,CFDBEA,,CEBFDFAE.写出CD与AB之间的关系,并证明你的结论.考点典例四、相似三角形【例5】(2017哈尔滨第9题)如图,在ABC△中,,DE分别为,ABAC边上的点,DEBC∥,点F为BC边上一点,连接AF交DE于点E,则下列结论中一定正确的是()A.ADAEABEC=B.ACAEGFBD=C.BDCEADAE=D.AGACAFEC=【答案】C【解析】考点:相似三角形的判定与性质.【点睛】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.【举一反三】(2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(0.5DEBC==米,,,ABC三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3CG=米,小明身高1.6EF=米,则凉亭的高度AB约为()A.8.5米B.9米C.9.5米D.10米考点典例五、位似三角形【例6】(2017黑龙江绥化第6题)如图,ABC是ABC在点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则:OBOB为()A.2:3B.3:2C.4:5D.4:9【答案】A【解析】试题分析:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴OBOB=故选A.考点:位似变换.【点睛】此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.【举一反三】(2017甘肃兰州第17题)如图,四边形ABCD与四边形EFGH相似,位似中心点是O,35OEOA=,则FGBC=.考点典例六:直角三角形【例7】(2017辽宁大连第8题)如图,在ABC中,090ACB,ABCD,垂足为D,点E是AB的中点,aDECD,则AB的长为()学+科网A.a2B.a22C.a3D.a334【答案】B.考点:直角三角形斜边上的中线.[来源:学科网]【点睛】本题可以考查直角三角形的性质,观察图形根据条件能够看出CE是Rt△ABC的斜边上的中线是解题的关键.【例8】(2017甘肃兰州第3题)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A.513B.1213C.512D.1312【答案】C.【解析】试题解析:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m,BC=50m,∴AC=222213050ABBC=120m,∴tan∠BAC=50512012BCAC.故选C.考点:解直角三角形的应用﹣坡度坡角问题.【点睛】本题可以考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比边.【举一反三】1.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2B.54C.53D.752.(2017河池第12题)已知等边ABC的边长为12,D是AB上的动点,过D作ACDE于点E,过E作BCEF于点F,过F作ABFG于点G.当G与D重合时,AD的长是()A.3B.4C.8D.9课时作业☆能力提升一、选择题1.(2017甘肃庆阳第8题)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2cB.2a+2bC.2cD.02.(2017贵州黔东南州第2题)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°3.(2017重庆A卷第8题)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:94.(2017浙江嘉兴第2题)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4B.5C.6D.95.(2017湖南株洲第5题)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145°B.150°C.155°D.160°6.(2017湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5B.4C.3+2D.2+2二、填空题7.(2017湖南常德第14题)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.8.(2017黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是ABC的“和谐分割线”,ACD为等腰三角形,CBD和ABC相似,46A,则ACB的度数为.学+科网9.(2017黑龙江绥化第20题)在等腰A
本文标题:2018年中考数学精品专题26三角形
链接地址:https://www.777doc.com/doc-3740535 .html