您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高数一试题(卷)与答案解析
《高等数学(一)》复习资料一、选择题1.若23lim53xxxkx,则k()A.3B.4C.5D.62.若21lim21xxkx,则k()A.1B.2C.3D.43.曲线3sin1xyex在点(0,2)处的切线方程为()A.22yxB.22yxC.23yxD.23yx4.曲线3sin1xyex在点(0,2)处的法线方程为()A.122yxB.122yxC.132yxD.132yx5.211limsinxxx()A.0B.3C.4D.56.设函数0()(1)(2)xfxttdt,则(3)f=()A1B2C3D47.求函数43242yxx的拐点有()个。A1B2C4D08.当x时,下列函数中有极限的是()。A.sinxB.1xeC.211xxD.arctanx9.已知'(3)=2f,0(3)(3)lim2hfhfh()。A.32B.32C.1D.-110.设42()=35fxxx,则(0)f为()fx在区间[2,2]上的()。A.极小值B.极大值C.最小值D.最大值11.设函数()fx在[1,2]上可导,且'()0,(1)0,(2)0,fxff则()fx在(1,2)内()A.至少有两个零点B.有且只有一个零点C.没有零点D.零点个数不能确定12.[()'()]fxxfxdx().A.()fxCB.'()fxCC.()xfxCD.2()fxC13.已知22(ln)yfx,则y(C)A.2222(ln)(ln)fxfxxB.24(ln)fxxC.224(ln)(ln)fxfxxD.222(ln)()fxfxx14.()dfx=(B)A.'()fxCB.()fxC.()fxD.()fxC15.2lnxdxx(D)A.2lnxxCB.lnxCxC.2lnxCD.2lnxC16.211limlnxxx()A.2B.3C.4D.517.设函数0()(1)(2)xfxttdt,则(2)f=()A1B0C2D218.曲线3yx的拐点坐标是()A.(0,0)B.(1,1)C.(2,2)D.(3,3)19.已知(ln)yfx,则y(A)A.(ln)fxxB.(ln)fxC.(ln)fxD.(ln)fxx20.()ddfx(A)A.()dfxB.()fxC.()dfxD.()fxC21.lnxdx(A)A.lnxxxCB.lnxxCC.lnxxD.lnx二、求积分(每题8分,共80分)1.求cossinxxdx.2.求343lnxdxx.3.求arctanxdx.4.求3exdx5.求2356xdxxx.6.求定积分8301dxx.7.计算20cosxxdx.8.求2128dxxx.9.求312dxx.11.求2212xxedx12.求2333xxdx13.求21lnexdxx14.求23xxdx三、解答题1.若21lim316xxaxx,求a2.讨论函数321()2333fxxxx的单调性并求其单调区间3.求函数22()2xxfxx的间断点并确定其类型4.设2sin,.xyxyxey求5.求35(1)2(3)xxyx的导数.6.求由方程cossinxatybt确定的导数xy.7.函数1,0()1,0tan,0xexfxxxx在0x处是否连续?8.函数1,0()1,0tan,0xexfxxxx在0x处是否可导?9.求抛物线2yx与直线yx所围成图形D的面积A.10.计算由抛物线22yx与直线4yx围成的图形D的面积A.11.设y是由方程sinyyyxe确定的函数,求y12.求证:ln1,1xxx13.设y是由方程1yyxe确定的函数,求y14.讨论函数32()29123fxxxx的单调性并求其单调区间15.求证:21,xex16.求函数3(1)()xxfxxx的间断点并确定其类型五、解方程1.求方程0)(22dyxyxdxy的通解.2.求方程20yyy的通解.3.求方程22yyyx的一个特解.4.求方程3595xyyyxe的通解.高数一复习资料参考答案一、选择题1-5:DABAA6-10:DBCDD11-15:BCCBD16-21:ABAAAA二、求积分1.求cossinxxdx.解:33222cossinsin(sin)sinsin33xxdxxdxxCxC2.求343lnxdxx.解:13343ln(43ln)(ln)xdxxdxx131(43ln)(43ln)3xdx431(43ln)4xC.3.求arctanxdx.解:设arctanux,dvdx,即vx,则arctanarctan(arctan)xdxxxxdx2arctan1xxxdxx21arctanln(1)2xxxC.4.求3exdx解:332222ee33e3e3e23e6exttttttxtdxtdttdtttdtttdt223e6e6e3e6e6ettttttttdtttC33233e(22)xxxC.5.求2356xdxxx.解:由上述可知23565623xxxxx,所以2356()5623xdxdxxxxx115623dxdxxx5ln26ln3xxC.6.求定积分8301dxx.解:令3xt,即3xt,则23dxtdt,且当0x时,0t;当8x时,2t,于是282223000313ln(1)3ln3121dxtdtttttx.7.计算20cosxxdx.解:令2ux,cosdvxdx,则2duxdx,sinvx,于是22200000cossin(sin)2sin2sinxxdxxdxxxxxdxxxdx.再用分部积分公式,得20000cos2cos2(cos)cosxxdxxdxxxxdx002(cos)sin2xxx.8.求2128dxxx.解:221113(1)(1)ln28(1)963(1)xdxdxCxxxx12ln64xCx.9.求312dxx.解:令32ux,则32xu,23dxudu,从而有22331131112dxuududuuux213(1)3(ln1)12uuduuuCu11.求2212xxedx解:2222222411112xxxxedxedxeee12.求2333xxdx解:32333322333(3)(3)3xxdxxdxxC13.求21lnexdxx解:22111ln111ln(ln)lnln333eeexdxxdxxex14.求23xxdx解:332222222112133(3)(3)(3)2233xxdxxdxxCxC三、解答题1.若21lim316xxaxx,求a解:因为2222913131xaxxxaxxxaxx,所以9a否则极限不存在。2.讨论函数321()2333fxxxx的单调性并求其单调区间解:2'()43fxxx由2'()430fxxx得121,3xx所以()fx在区间(,1)上单调增,在区间(1,3)上单调减,在区间(3,)上单调增。3.求函数22()2xxfxx的间断点并确定其类型解:函数无定义的点为2x,是唯一的间断点。因2lim()3xfx知2x是可去间断点。4.设2sin,.xyxyxey求解:22cos()xyyxyyxeyy,故()cos(2)xyxyyeyxyxye5.求35(1)2(3)xxyx的导数.解:对原式两边取对数得:1ln3ln(1)ln(2)5ln(3),2yxxx于是3115,1223yyxxx故35(1)23115[].1223(3)xxyxxxx6.求由方程cossinxatybt确定的导数xy.解:22()cos.()sinxytbtbxyxtatay7.函数1,0()1,0tan,0xexfxxxx在0x处是否连续?解:100lim()lim0xxxfxe00lim()limtan0xxfxx故在0x处不连续。8.函数1,0()1,0tan,0xexfxxxx在0x处是否可导?解:因为100()(0)1limlimxxxfxfexx所以在0x处不可导。9.求抛物线2yx与直线yx所围成图形D的面积A.解:求解方程组2yxyx得直线与抛物线的交点为00xy,11xy,见图6-9,所以该图形在直线0x与x=1之间,2yx为图形的下边界,yx为图形的上边界,故11312200011236xAxxdxx.10.计算由抛物线22yx与直线4yx围成的图形D的面积A.解:求解方程组224yxyx得抛物线与直线的交点(2,2)和(8,4),见图6-10,下面分两种方法求解.方法1图形D夹在水平线2y与4y之间,其左边界22yx,右边界4xy,故42234224418226yyyAydyy.方法2图形D夹在直线0x与8x之间,上边界为2yx,而下边界是由两条曲线2yx与4yx分段构成的,所以需要将图形D分成两个小区域1D,2D,故28022(2)24Axxdxxxdx23202223x832222241832xxx.11.设y是由方程sinyyyxe确定的函数,求y解:两边对x求导得''cos'yyyyyexey整理得'1cosyyeyyxe12.求证:ln1,1xxx证明:令()(1)lnfxxx因为11'()10xfxxx所以()0fx,1x。13.设y是由方程1yyxe确定的函数,求y解:两边对x求导得''yyyexey整理得'1yyeyxe14.讨论函数32()29123fxxxx的单调性并求其单调区间解:2'()61812fxxx由2'()618120fxxx得121,2xx所以()fx在区间(,1)上单调增,在区间(1,2)上单调减,在区间(2,)上单调增。15.求证:21xex证:令()21xfxex因为'()20xfxe得ln2x,又因为(ln2)22ln210f所以()0fx。16.求函数3(1)()xxfxxx的间断点并确定其类型解:由分母30xx得间断点0,1xx。因0lim()1xfx知0x是可去间断点;因21111lim()lim12xxxfxx知1x也是可去间断点因21111lim()lim12xxxfxx知1x也是可去间断点四、解方程1.求方程0)(
本文标题:高数一试题(卷)与答案解析
链接地址:https://www.777doc.com/doc-3744868 .html