您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 薪酬管理 > 中考数学题型及方法总结
初中数学中的固定题型及惯性思维一、角平分线的考点1.定义2.性质(垂直于角的两边)3.对称性(垂直于角平分线,构造全等,得到中点)二、中点的三个考点1.斜边中线(直角与中点)2.三线合一(等腰与中点)3.中位线(两个中点)附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。三、等腰三角形的考点1.等角对等边2.等边对等角3.三线合一四、全等三角形1.五个全等三角形的判定定理2.对应边对应角相等五、轴对称图形1.角的对称性(性质)2.线段的对称性(性质)3.等腰三角形的对称性(三线合一)附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。六、勾股定理1.勾股定理的公式2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形)附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5;6,8,10;5,12,13;7,24,25七、平面直角坐标系1.平面直角坐标系是用来确定点及图像的位置的2.坐标轴及象限的划分附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。八、二次根式1.二次根式的非负性2.同类二次根式3.最简二次根式4.二次根式的比较大小5.二次根式的加减乘除附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。九、一元二次方程1.定义(二次项系数不为0)2.四种解法(优先考虑因式分解法,主要是十字相乘)3.一元二次方程根的个数的判别式4.一元二次方程根与系数的关系,即韦达定理附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。十、二次函数1.定义(最高次为2,二次项系数不为0)2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置)3.二次函数的增减性4.二次函数的动点问题附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。十一、分式方程1.分式方程的定义(有可能考选择题)2.分式方程的解的情况3.已知分式方程的解的情况,求未知实数的取值范围附注:1.增根是分式方程无解的特殊情况2.如果告诉分式方程的解为负数,解出X之后,一方面x0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。十二、圆1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等2.切线长定理3.垂径定理直径:直径所对圆周角是90度角:同弧所对圆周角相等,同弧所对圆周角是圆心角的一半弦:垂径定理弧长相等:弦相等切线:连接圆心与切点内接四边形:对角互补附注:在圆中要记住有很多等腰三角形,另外也经常跟全等和相似结合在一起。数学题目中的常见突破口及惯性思维1.中点(考点及作辅助线方法相对比较固定)2.角平分线(处理方法如上述总结)3.直角(直角一般跟斜边中线、勾股定理、相似、等量代换结合起来)4.平行(同位角、内错角、同旁内角)5.出现比例线段或者乘积形式(相似)6.等腰直角三角形、正方形、等边三角形中出现勾股线段或者等差线段,使用旋转法7.A型、K型、L型(K型)、X型、Z型(X型)相似8.反比例函数中出现成比例线段(关联点坐标)9.正方形(跟等腰直角三角形结合起来,因为比较容易构造)10.一题多解(等腰三角形要分腰与底;直角三角形要分斜边与直角边;平行四边形要分边与对角线;相似要分哪两条线段对应成比例)11.分类依据(不同图形的分类依据不同,这里不作细述)12.求线段长度或者角的大小,在不知线段如何表示的情况下,要习惯性地假设未知数中考数学题型总结1.已知点),4(1y,2,2y都在直线221xy上,则1y与2y的大小关系是(A)21yy(B)21yy(C)21yy(D)不能比较比较函数值大小,两种方法:1.直接求解函数值再进行比较2.利用数形结合法,通过函数图像直观地看出函数值大小。2.月球的半径约为1738000m,1738000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×105科学计数法,记住形式:a*10^n(1=a10).3.25的值是()A.±5B.5C.–5D.625A.B.C.D.此题考察二次根式的相关概念:平方根及算术平方根,此题显然是求25的算术平方根,故选B。4.下列运算正确的是()A.236aaaB.236()yyC.2353()mnmnD.222253xxx此题考察七年级的幂的运算和合并同类项,幂的运算有三个运算法则,一是同底数幂的乘法,二是幂的乘方,三是乘积的乘方,另外要注意:负数的奇数次幂为负数,偶数次幂为正数。幂的运算在中考中一定是会涉及的,所以虽然简单,但务必掌握扎实。5.两个不相等的实数m,n满足462mm,462nn,则mn的值D(A)6(B)-6(C)4(D)-4求有关一元二次方程的根的代数式的值:方法有两种,一种是代入法,一种是韦达定理,具备X1+X2和X1*X2的形式就用韦达定理,其他情况一律使用代入法,本题是一个变型形式,记住八个字“形式一致,构造方程”(在高中也有类似构造函数的题目),把所给变量当作构造方程的两个实数根即可。6.下列图形中,既是轴对称图形,又是中心对称图形的是()此题考察轴对称图形与中心对称图形的定义及判断,轴对称图形和中心对称图形都分为两种,一种是两个图形关于某点或者某直线呈中心对称图形或者轴对称图形,还有一种就是图形本身是轴对称或者中心对称图形。A是中心对称图形,B是轴对称图形,C既是中心对称亦是轴对称,D是中心对称。此外我们之前还对正多边形的对称性进行过总结,即正奇数边形是轴对称图形,但不是中心对称图形,正偶数边形既是中心对称亦是轴对称图形。此为送分题,基础扎实的学生可以快速判断出正确答案。7.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是()A.59,63B.59,61C.59,59D.57,61此题考察众数、中位数的概念,相关的概念还有平均数、方差、极差,注意:找中位数一定要把所给的一列数按从大到小或从小到大的顺序排列,偶数个数就是排在中间两个数的平均数,奇数个数就是中间的那个数。此题也是比较简单的概念性问题,但务必概念清晰。8.将1xx根号外的因式移入根号内,则原式等于()A.xB.-xC.xD.-x本题考察二次根式的运算及性质,首先要判断x的正负,此题易判断x为负数(二次根式必须保证开方数大于或者等于0,因为分母为未知数,根据代数式有意义,此题x只能为负数),据此可以快速排除C、D,又因为原数显然小于0,所以可以排除A,故B为正确选项。当然也可以通过运算性质得出B选项。9.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是C(A)36(B)233(C)33(D)3本题为最短路径问题,可以归为最值问题中的一种,最值问题在初中阶段共有八种,代数中有绝对值、平方、二次根式、二次函数,几何中有两点之间线段最短、三角形两边之和大于第三边、点到直线的垂线段最短、圆外一点到圆上点的距离。另外还有两种难题,一种是求两个动点和两个定点所构成的四边形周长最小,但两个动点之间的距离是定值,此种题型利用平行四边形对边相等进行替换即可;还有一种求两个动点和两个定点所构成的四边形周长最小,但仅仅已知两个动点所在的直线,此种题目需要作两个对称点,然后转化成两点之间线段最短。10.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=kx(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=40x(x>0);②E点的坐标是(5,8);③sin∠COA=45;④AC+OB=125.其中正确的结论有()A.1个B.2个(第3题)AC.3个D.4个考察此类题目需要学生有较强的分析能力和扎实的基本功,需要对4个选项逐一进行判断,此题图形分为两个:反比例函数和菱形,所以在解题时要充分利用两个图形的性质及对应的解题方法(反比例函数:绝大多数难题都是考察关联点坐标,比如此题先求出D点坐标,再根据菱形的性质得出B点坐标,从而验证E点坐标;菱形:对角线相互垂直且平分),另外选项3是判断三角函数值的,这种题目固定有两种处理方法,一种是构造直角,把所求角放在直角三角形中,另外一种是利用相等角替换。11.(2分)(2011•苏州)如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()此题考察特殊角的转化与使用以及特殊的直线方程对应的特殊角。其中30°,45°,60°这三个特殊角所对应的直线方程一定要熟练记忆并灵活运用。12.(2分)(2010•无锡)如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2B.等于C.等于D.无法确定反比例函数典型的关联点坐标题,只要题目中出现比例线段,要习惯性的使用关联点坐标进行求解,即假设其中一个点坐标,表示出与之相关的点坐标,然后根据题目已知的等量关系列式并求解。一般假设的点坐标为小比例线段的端点,比如此题假设D点坐标处理起来更为方便。13.因式分解:224ab=▲.因式分解有4种方法,两项要么使用提公因式,要么使用平方差公式;三项要么使用十字相乘,要么使用完全平方公式;四项及以上一律使用分组法。但所有的因式分解都优先考虑提公因式法。注意:因式分解之后的各个因式如果能合并同类项的一定要合并。14.若23ab,则924ab的值为▲.代数式求值,整体思想的应用,因为此题只给出一个等式,但含有两个未知数,所以显然不是分别求出a,b的值再代入求值。所以此类题目要观察已知等式与所求代数式之间的关系,一般都是倍数关系,除了一元二次方程的求值问题会利用代入法或者韦达定理。注意:有的倍数关系不是整数倍,但我们在做此类题目之前已经知道题目考察的是倍数关系,利用整体思想求值,所以只要用对应字母的系数相除就可以判断出是多少倍(包括不是整数倍的情况),比如此题,a的系数分别是1和-2,所以只要把前面的等式乘以-2即可。15.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在F处,折痕为MN,则线段CN的长是_______.此题考察图形的折叠,常见的图形变化还有平移、旋转,以上变化均改变位置,不改变形状,所以要利用对应边及对应角相等。在矩形和正方形的折叠题当中还要把勾股定理当作一种惯性思维,解题中经常用到。16.(2分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2012次运动后,动点P的坐标是_________.此题为找规律题,规律题我们并不陌生,从小学到高中各个阶段都有对应形式的规律题,但规律也分为很多种不同的题型,但比较常考的规律有和差倍分、奇偶变化、次方变化(初中以后两种考察形式为主),比如此题,运动奇数次与偶数次对应的纵坐标不同,而横坐标是依次加1的简单变化。17.(5分)计算230116(2)(πtan60)23cos303中考必考题型之一,计算题会涉及到的知识点有幂的运算、绝对值、二次根式、三角函数,计算时一定要
本文标题:中考数学题型及方法总结
链接地址:https://www.777doc.com/doc-3749612 .html