您好,欢迎访问三七文档
勾股定理有着悠久的历史,是人类最伟大的数学发现之一。但由于教材的编写遵循了简约性原则,在学习勾股定理知识的过程中,没能更深入地介绍它产生、发展的历史背景、多样的验证方法,以及在人类文化发展史上的贡献。因此,在学生完成了《勾股定理》这章的学习之后,设置了《勾股定理的“无字证明”》的课题学习,它属于《数学课程标准》中所规定的“实践与综合应用”领域的内容,是对课本知识进一步的延伸和拓展,让学生更全面的认识勾股定理,了解拼图与定理证明之间的内在联系,通过经历综合应用知识解决问题的过程,领会其中的数学思想方法,以开拓学生视野,激发他们的创新意识和学习数学的兴趣。《勾股定理证明方法汇总》1.课前自主探究活动方法种类及历史背景验证定理的具体过程知识运用及思想方法探究报告请各个学习小组从网络或书籍上,尽可能多的寻找和了解验证勾股定理的方法。2.探究成果的交流与展示三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。方法一弦图赵爽东汉末至三国时代吴国人为《周髀算经》作注,并著有《勾股圆方图说》。c22)(214ababc22222aabbabc222bac由面积计算得展开得化简得用几何图形的截、割、拼、补,来证明代数式之间的恒等关系。体现了以形证数、形数统一、代数和几何的紧密结合。赵爽的“弦图”证明一证明二ba(a+b)2=c2+4(½ab)a2+2ab+b2=c2+2aba2+b2=c2c美国总统的证明加菲(JamesA.Garfield,18311881)1881年成为美国第20任总统.1876年提出有关证明.参考:方法二½(a+b)(b+a)=½c2+2(½ab)½a2+ab+½b2=½c2+aba2+b2=c2aabbcc方法二方法一与方法二的比较两个证明基本上相同!方法一与方法二的比较两个证明基本上相同!方法一与方法二的「缺点」两个证明都需要用到两个恒等式:(ab)2=a22ab+b2约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。方法三青出青出青朱朱出青入青入朱入a2b2证明c2a2+b2=c2希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。1955年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发行了一张邮票,图案是由三个棋盘排列而成。方法四几何原本欧几里得(EuclidofAlexandria;约325B.C.约265B.C.)欧几里得的《几何原本》是用公理方法建立演绎数学体系的最早典范。「证法四」就是取材自《几何原本》第一卷的第47命题。参考:证明证明证明证明证明画家的证法达·芬奇(LeonardoDaVinci1452-1519).文艺复兴时期卓越的代表人物.他不仅是一位天才的画家,并且是大数学家、科学家、力学家和工程师.第一次在数学上使用加减(+、-)符号.方法五abc方法五证明abc证明abcbca证明a2+b2=c2abcbcaabc•下面据传是当年毕达哥拉斯发现勾股定理时做出的证明。将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c2=a2+b2图1图2abcabc5.尝试拼图,验证勾股定理拼图游戏青朱入出图拼图游戏c2拼图游戏拼图游戏拼图游戏拼图游戏a2b2a2+b2=c2a印度婆什迦羅的证明cc2=b2+a2bIIIIII注意:面积I:面积II:面积III=a2:b2:c2IIIIII注意:面积I:面积II:面积III=a2:b2:c2以上的证明方法都从几何图形的面积变化入手,运用了数形结合的思想方法,其中第一、二种类型还与拼图有着密切的关系。4.勾股定理的文化价值(1)勾股定理是联系数学中数与形的第一定理。(2)勾股定理反映了自然界基本规律,有文明的宇宙“人”都应该认识它,因而勾股定理图被建议作为与“外星人”联系的信号。(3)勾股定理导致不可通约量的发现,引发第一次数学危机。(4)勾股定理公式是第一个不定方程,为不定方程的解题程序树立了一个范式。6.小结反思,课题拓展我最大的收获;我表现较好的方面;我学会了哪些知识;我还有哪些疑惑……学生反思:(1)写数学日记并发挥你的聪明才智,去探索勾股定理、去研究勾股定理,你又有什么新的发现?(2)尝试用七巧板拼图,你能验证勾股定理吗?课题拓展:评价表评价项目因素优良中差参与活动做事有计划查阅、整理资料与人合作提出问题并询问大胆尝试并表达自己的看法倾听别人的发言讨论与发言思维水平有条理地表达自己的意见解决问题的过程清楚善于用不同的方法解决问题独立思考总评
本文标题:勾股定理拼图
链接地址:https://www.777doc.com/doc-3754720 .html