您好,欢迎访问三七文档
2.双叶双曲面定义4.5.2在直角坐标系下,由方程1222222czbyax(4.5-2)所表示的图形,叫做双叶双曲面,方程(4.5-2)叫做双叶双曲面的标准方程其中cba,,是任意的正常数.因为双曲面的方程(4.5-2)仅含坐标的平方项,因此这个曲面关于三坐标平面,三坐标轴以及坐标原点都对称,对称性z轴相交于两点),0,0(c这两点叫做双叶双曲面的顶点.曲面与x轴y轴都不相交,只与1222222czbyaxzyx0MNz(x,y,z)(0,0,c)(0,0,-c)只与z轴有交点与平面z=0相交吗?从方程容易知道,曲面上的点恒有,22cz因此曲面分成两叶cz.cz与而其它两个坐标平面0z0y0x与两条双曲线.1222222czbyax坐标平面与双叶双曲面不相交.分别交曲面于;0,12222yaxcz.0,12222xbycz与;0,12222yaxcz.0,12222xbycz与yxzo这二个截口叫做主截线哈,交空啦0y0xzc如果用一组平行于的平面xOy)(chhz来截割曲面,我们得截线方程为1222222czbyax.,1222222hzchbyax当时,截得的图形为一点,当时,截线为椭圆,它的两半轴为chch122cha.122chb与.,1222222hzchbyax(8)这时椭圆(8)的两轴的端点),0,1(22hcha),1,0(22hchb与z0y分别在?主截线:两个双曲线上.hc(0,0,c)(0,0,-c)与Z轴有交点.这是主截线hch-chcx.,1222222hzchbyax(8)这时椭圆(8)的两轴的端点),0,1(22hcha),1,0(22hchb与分别在主截线:两个双曲线上.;0,12222yaxcz22221,0.zycbx与z0y(0,0,c)(0,0,-c)x因此,双叶双曲面可以看成是由一个椭圆变动(大小位置都改变)而产生的,这个椭圆在变动中,保持所在平面平行于面,且两轴的端点分别沿着双曲线(6)(7)滑动。xOy;0,12222yaxcz22221,0.zycbx(6)(7)看下面的演示z0y(0,0,c)(0,0,-c)x椭圆在变动中,保持所在平面平行于xoy面,且两轴的端点分别沿着双曲线(6)(7)滑动而形成双叶双曲面.0yzx;0,12222yaxcz22221,0.zycbx(6)(7)如果用一组平行于的平面xOzyh来截割曲面,我们得截线方程为1222222czbyax2222221,.zxhcabyh为双曲线实轴平行z轴,虚轴平行x轴。z0yxyhxyo如果用一组平行于的两平行平面xOzyh来截割曲面.在方程中,如果,那么这时截线(8)为一圆,曲面就是一个旋转双叶双曲面。ba1222222czbyax1222222czbyax与所表示的图形,也都是双叶双曲面.见后页图.1222222czbyax222221xyzac1222222czbyax1222222czbyaxz0yx单叶双曲面单叶双曲面和双叶双曲面统称为双曲面.1222222czbyax1222222czbyax0222222czbyax单叶:双叶:yxzo渐近锥面:19.双曲面的渐近锥面作业:第166页.2.
本文标题:双叶双曲面
链接地址:https://www.777doc.com/doc-3762697 .html