您好,欢迎访问三七文档
30习题二1.设212sgt,求2ddtst.解:ddsgtt,故2d2dtsgt.2.(1)设1()fxx,求00()(0);fxx解:00021()().xxfxfxx(2)设()(1)(2)(),fxxxxxn求(0).f解:00()(0)(0)limlim(1)(2)()0(1)!xxnfxffxxxnxn3.下列各题中均假定0()fx存在,按照导数定义观察下列极限,指出A表示什么.(1)000()()lim;xfxxfxAx解:0000000()()()()limlim()xxfxxfxfxxfxfxxx故0()Afx(2)000()()0,lim;xxfxfxAxx解:00000()()limlim()xxxxfxfxfxxxxx故0()Afx(3)000()()lim.hfxhfxhAh解:3100000000000000000()()()()()()limlim()()()()limlim()()2()hhhhfxhfxhfxhfxfxhfxhhhfxhfxfxhfxhhfxfxfx故02().Afx4.讨论函数3yx在0x点处的连续性和可导性.解:30lim0(0)xxf,故函数在0x处连续.又233000limlim0xxxxx,故函数在0x处不可导.5.设函数2,1,(),1.xxfxaxbx为了使函数()fx在1x点处连续且可导,,ab应取什么值?解:因211lim()lim1(1)xxfxxf11lim()lim()xxfxaxbab要使()fx在1x处连续,则有1,ab又211()(1)1(1)limlim2,11xxfxfxfxx111(1)limlim,11xxaxbaxafaxx要使()fx在1x处可导,则必须(1)(1)ff,即2.a故当2,1ab时,()fx在1x处连续且可导.6.讨论下列函数在指定点的连续性与可导性:(1)sin,0;yxx解:因为0,0lim0xxyy所以此函数在0x处连续.又00()(0)sin(0)limlim1,0xxfxfxfxx00()(0)sin(0)limlim1,0xxfxfxfxx32(0)(0)ff,故此函数在0x处不可导.(2)21sin,0,0;0,0,xxyxxx解:因为201limsin0(0),xxyx故函数在0x处连续.又2001sin()(0)(0)limlim00xxxfxfxyxx,故函数在0x处可导.(3),1,1.2,1,xxyxxx解:因为1111lim()lim(2)1lim()lim1xxxxfxxfxx11lim()lim()(1)1xxfxfxf,故函数在x=1处连续.又11()(1)1(1)limlim111xxfxfxfxx11()(1)21(1)limlim111xxfxfxfxx(1)(1)ff,故函数在x=1处不可导.7.如果()fx为偶函数,且(0)f存在,证明:(0)0.f证明:000()(0)()(0)(0)limlim()(0)lim(0),xxxfxffxffxxfxffx故(0)0.f8.求下列函数在0x处的左、右导数,从而证明函数在0x处不可导.(1)03sin,0,0;,0,xxyxxx证明:00()(0)sin(0)limlim1,0xxfxfxfxx33300()(0)(0)limlim0,0xxfxfxfxx因(0)(0)ff,故函数在00x处不可导.(2)10,0,0;1e0,0,xxxyxx证明:100()(0)1(0)limlim0,01exxxfxffx100()(0)1(0)limlim1,01exxxfxffx因(0)(0)ff,故函数在00x处不可导.(3)02,1,1.,1,xxyxxx证明:11()(1)11(1)limlim,112xxfxfxfxx211()(1)1(1)limlim2,11xxfxfxfxx因(1)(1)ff,故函数在01x处不可导.9.求下列函数的导数:(1)yx;解:12yx(2)321yx;解:5323yx(3)3225xxyx;34解:2512326yxx561.6yx10.已知sin,0,(),0,xxfxxx求()fx.解:当0x时,()cos,fxx当0x时,()1,fx当0x时,0sin0(0)lim1,0xxfx00(0)lim1,0xxfx故(0)1.f综上所述知cos,0,()1,0.xxfxx11.设()()fxxax,其中a为常数,()x为连续函数,讨论()fx在xa处的可导性.解:()()()()()limlim()()()()()()limlim()xaxaxaxafxfaxaxfaaxaxafxfaaxxfaaxaxa.故当()0a时,()fx在xa处可导,且()0fa当()0a时,()fx在xa处不可导.12.已知2()max{,3}fxx,求()fx.解:23,3(),3xfxxx当3x时,()0fx,当3x时,()2fxx,3523333(3)limlim(3)23333(3)lim0,3xxxxfxxfx故(3)f不存在.又323333(3)lim0,33(3)limlim(3)23,3xxxfxxfxx故(3)f不存在.综上所述知0,3()2,3xfxxx.13.若11()exxfx,求()fx.解:令1tx,则1()ettft,即1()exxfx121()e(1)xxfxx14.试求过点(3,8)且与曲线2yx相切的直线方程.解:曲线上任意一点(,)xy处的切线斜率为2kx.因此过(3,8)且与曲线相切的直线方程为:82(3)yxx,且与曲线的交点可由方程组解得282(3)yxxyx为(2,4),(4,16)即为切点.故切线方程为:44(2),168(4).yxyx15.证明:双曲线2xya上任一点处的切线与两坐标轴构成的三角形的面积都等于22a.证明:在双曲线上任取一点00(,),Mxy则2220220,,xaaayyyxxx,36则过M点的切线方程为:20020()ayyxxx令220000002202xyxayxxxxaa得切线与x轴的交点为0(2,0)x,令2000000002xyaxyyyyxx得切线与y轴的交点为0(0,2)y,故2000012222.2Sxyxya16.已知()fx在0xx点可导,证明:0000()()lim()()hfxhfxhfxh.证明:000()()limhfxhfxhh000000()()()()limlimhhfxahfxfxhfxhh000()()()().fxfxfx17.垂直向上抛一物体,其上升高度与时间t的关系式为:21()10(m),2httgt求:⑴物体从t=1(s)到t=1.2(s)的平均速度:解:111121.4410(1.2)(1)220.78(ms)1.210.2gghhv⑵速度函数v(t);解:()()10vthtgt.⑶物体何时到达最高.解:令()100htgt,得10(s)tg,即物体到达最高点的时刻为10s.tg3718.设物体绕定轴旋转,在时间间隔[0,t]内,转过角度,从而转角是t的函数:()t.如果旋转是匀速的,那么称t为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻0t的角速度?解:设此角速度值为,则0000()()lim()tttttt.19.设()QQT表示重1单位的金属从0C加热到CT所吸收的热量,当金属从CT升温到()CTT时,所需热量为()(),QQTTQTQ与T之比称为T到TT的平均比热,试解答如下问题:⑴如何定义在CT时,金属的比热;解:0()()lim()TQTTQTQTT⑵当2()QTaTbT(其中a,b均为常数)时,求比热.解:()2QTabT.20.求下列函数在给定点处的导数:⑴1sincos,2yxxx求π4ddxyx;解:11sincossinsincos22yxxxxxxxπ41πππ2πsincos(1)244442xy⑵23(),55xfxx求(0)f和(2)f;解:232()(5)5fxxx317(0)(2)2515ff⑶254,1,()43,1,xxfxxxx求(1)f.解:211()(1)431(1)limlim511xxfxfxxfxx3811()(1)541(1)limlim511xxfxfxfxx故(1)5.f21.求下列函数的导数:⑴π3lnsin7St;解:3St⑵lnyxx;解:111ln(ln2)22yxxxxxx⑶2(1)sin(1sin)yxxx;解:222222sin(1sin)(1)cos(1sin)(1)sin(cos)2sin2sincoscossin2sin2yxxxxxxxxxxxxxxxxxxx⑷1sin1cosxyx;解:22cos(1cos)(1sin)sin1sincos(1cos)(1cos)xxxxxxyxx⑸πtaneyx;解:2secyx⑹sec3secxyxx;解:2sectansec3sectanxxxxyxxx⑺2ln2lg3logyxxx;解:11112323(1)ln10ln2ln1012yxxxxn⑻211yxx.解:22(12)(1)xyxx22.设12()()()()0npxfxfxfx,且所有的函数都可导,证明:391212()()()()()()()()nnfxfxfxPxPxfxfxfx证明:1212121212()1[()()()()()()()()()]()()()()().()()()nnnnnPxfxfxfxfxfxfxfxfxfxPxPxfxfxfxfxfxfx23.求下列函数的导数:⑴3exy;⑵2arctanyx;⑶2+1exy
本文标题:习题二
链接地址:https://www.777doc.com/doc-3767642 .html