您好,欢迎访问三七文档
1/151.(2018•卷Ⅱ)设函数(1)当时,求不等式的解集;(2)若,求的取值范围2.(2013•辽宁)已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.3.(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.4.(2017•新课标Ⅱ)[选修4-5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.5.(2017•新课标Ⅰ卷)[选修4-5:不等式选讲]已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.6.(2017•新课标Ⅱ)[选修4-5:不等式选讲]已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.7.(2018•卷Ⅰ)已知(1)当时,求不等式的解集(2)若时,不等式成立,求的取值范围8.(2018•卷Ⅰ)已知f(x)=|x+1|-|ax-1|(1)当a=1时,求不等式f(x)1的解集(2)若x∈(0,1)时不等式f(x)x成立,求a的取值范围9.(2017•新课标Ⅲ)[选修4-5:不等式选讲]已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.10.(2014•新课标II)设函数f(x)=|x+|+|x﹣a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.11.(2015·福建)选修4-5:不等式选讲已知,函数的最小值为4.(1)求的值;2/15(2)求的最小值.12.(2014•新课标I)若a>0,b>0,且+=√.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.13.(2017•新课标Ⅲ)已知函数f(x)=lnx+ax2+(2a+1)x.(12分)(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.14.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.15.(2018•卷Ⅲ)设函数(1)画出的图像(2)当∞时,,求的最小值。16.(2013•福建)设不等式|x﹣2|<a(a∈N*)的解集为A,且(1)求a的值(2)求函数f(x)=|x+a|+|x﹣2|的最小值.17.(2013•新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=﹣2时,求不等式f(x)<g(x)的解集;(2)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.18.(2016•全国)选修4—5:不等式选讲已知函数f(x)=∣x-∣+∣x+∣,M为不等式f(x)<2的解集.(1)求M;(2)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。19.(2016•全国)[选修4-5:不等式选讲]已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.3/1520.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.21.(2012•辽宁)选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(1)求a的值;(2)若恒成立,求k的取值范围.4/15答案解析部分一、解答题1.【答案】(1)a=1时,时,由()﹤﹤当x≥2时,由f(x)≥0得:6-2x≥0,解得:x≤3;当-1<x<x时,f(x)≥0;当x≤-1时,由f(x)≥0得:4+2x≥0,解得x≥-2所以f(x)≥0的解集为{x|-2≤x≤3}(2)若f(x)≤1,即恒成立也就是x∈R,恒成立当x=2时取等,所以x∈R,等价于解得:a≥2或a≤-6所以a的取值范围(-∞,-6]∪[2,+∞)【解析】【分析】(1)由绝对值不等式的解法易得;(2)由绝对值几何意义转化易得.2.【答案】(1)解:当a=2时,f(x)≥4﹣|x﹣4|可化为|x﹣2|+|x﹣4|≥4,当x≤2时,得﹣2x+6≥4,解得x≤1;当2<x<4时,得2≥4,无解;当x≥4时,得2x﹣6≥4,解得x≥5;故不等式的解集为{x|x≥5或x≤1}(2)解:设h(x)=f(2x+a)﹣2f(x),则h(x)=由|h(x)|≤2得,又已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},所以,故a=3.5/15【解析】【分析】(1)当a=2时,f(x)≥4﹣|x﹣4|可化为|x﹣2|+|x﹣4|≥4,直接求出不等式|x﹣2|+|x﹣4|≥4的解集即可.(2)设h(x)=f(2x+a)﹣2f(x),则h(x)=<<.由|h(x)|≤2解得,它与1≤x≤2等价,然后求出a的值.3.【答案】解:(Ⅰ)∵f(x)=|x+1|﹣|x﹣2|=,,,,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(Ⅱ)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)=,,,,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈(﹣1,2),∴g(x)≤g()=﹣+﹣1=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g(x)≤g(2)=﹣4+2=3=1;综上,g(x)max=,∴m的取值范围为(﹣∞,].【解析】【分析】(Ⅰ)由于f(x)=|x+1|﹣|x﹣2|=,,,,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(Ⅱ)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max=,从而可得m的取值范围.4.【答案】证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥(√+√)2=(a3+b3)2≥4,当且仅当√=√,即a=b=1时取等号,(Ⅱ)∵a3+b3=2,6/15∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.【解析】【分析】(Ⅰ)由柯西不等式即可证明,(Ⅱ)由a3+b3=2转化为=ab,再由均值不等式可得:=ab≤()2,即可得到(a+b)3≤2,问题得以证明.5.【答案】(1)解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,,,,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=√,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,√];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,√];(2)(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].【解析】【分析】(1.)当a=1时,f(x)=﹣x2+x+4,g(x)=|x+1|+|x﹣1|=,,,,分x>1、x∈[﹣1,1]、x∈(﹣∞,﹣1)三类讨论,结合g(x)与f(x)的单调性质即可求得f(x)≥g(x)的解集为[﹣1,√];(2.)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立⇔x2﹣ax﹣2≤0在[﹣1,1]恒成立,只需,解之即可得a的取值范围.7/156.【答案】证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥(√+√)2=(a3+b3)2≥4,当且仅当√=√,即a=b=1时取等号,(Ⅱ)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.【解析】【分析】(Ⅰ)由柯西不等式即可证明,(Ⅱ)由a3+b3=2转化为=ab,再由均值不等式可得:=ab≤()2,即可得到≤2,问题得以证明.7.【答案】(1)解:当时,,即故不等式的解集为.(2)解:当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【解析】【分析】(1)通过对x分类讨论去掉绝对值,解不等式,求出解集;(2)不等式恒成立等价于f(x)-x0对于恒成立,即函数f(x)-x的最小值大于0,由此求出a的范围.8.【答案】(1)解:当a=1时,当时,-2>1舍当时,2x>1∴当时,2>1,成立,综上所述结果为∞(2)解:∵∴8/15∵ax>0∴a>0.ax<2又所以综上所述【解析】【分析】通过对x分类讨论去掉绝对值,解不等式,求出解集;(2)不等式恒成立等价于f(x)-x0对于恒成立,即函数f(x)-x的最小值大于0,由此求出a的范围.9.【答案】(1)解:∵f(x)=|x+1|﹣|x﹣2|=,,,,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)=,,,,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈(﹣1,2),∴g(x)≤g()=﹣+﹣1=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g(x)≤g(2)=﹣4+2=3=1;综上,g(x)max=,∴m的取值范围为(﹣∞,].【解析】【分析】(1.)由于f(x)=|x+1|﹣|x﹣2|=,,,,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2.)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max=,从而可得m的取值范围.9/1510.【答案】(1)解:证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<
本文标题:数学不等式高考真题
链接地址:https://www.777doc.com/doc-3771545 .html