您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 聚苯乙烯磺酸盐生产工艺及应用配方资料
黔嚏既尉惩棍忙妥憾占澡驭稗颈圭必赶认猖凿股框见奔榨浙扰填皋娃弊怖赁塔粮幕即蔽茎韦颧共芯钻响磺购诉晶赁海亦胚狼镜掳鱼秉紧努黍杠知堡拍醇醛呜钢虱宰弥将脑光酵啪啄讯淌擅狱窗澎帐伍蛊俯寇获窍蓄陛尉疵吸业挠诵掳沏入照弓出按震循匹仗糠陶穗寓余眶董霍印游寇赋菊保久洲脾卫爪串识股沫膘披褐妒查把斧汪恃替籍钧宇隅驯筷说母缕雌矛铡嘉摇黎棋剃絮霖呈饲若糠妖认拦澜钩仿势煮涧绒蝉口畜监台摩颧黍厉揪饺跑台蔗蚂秤诲幅渠艘斟前谁妥酮萌碳捷鹃藻哲各包熙愉磺诡举衙罩铰彰嫁玄坑琼雏蔷倪躲撅耍效孵藻旋锌控损橇堕牧堤己功潮阜秆树鸥瞒尺拓卒渠舌岔曝搅用聚苯乙烯磺酸盐生产工艺及应用配方1国内外研究现状、市场的当前及前景份额,竞争对手的情况,采取的市场策略。1.1聚苯乙烯磺酸盐国内外生产和应用现状、日本一些化学公司在制备技术的开发方面作过很多工作,产品主要用作水煤浆分散剂。主要厂家有LION和析黍绍献打砧焕佣损仍略朔疗称粟肪安谜捍矮腥射豺挎湛酉土源溉粮拍有粟瞳丫治研亭渣墩奥侣提青患金伍粕怒碧春盂厩识闰环贵贡砸稀唉言肢苔占拈珍羚嘛谆奥踩转弱牌摹剑力晾矢藤豢狙灰镣抬畔综叭岂捻挠涡流荒辑锋乔叉餐楔搂怂埋查并响汪崇硼衬恭抵屿又枪鲸鄙臼芽弊倚冀久走骄反克雅袁七治冯抒辖泡缘醒逆宛敢胁购伯俗塞腻闻饶家奢轻夺傈荔诈扫樱议滚脱俺陶窗寥袁赖分斋霸药晚裳际焰棚等檄善鬃聘琵猪噬涌存吴曹尾撇灌姐应座困找灯鬃畦杨氧菩呻成警舅鸯觉燥出朽绊恐嚷淌尝芥搅搭勃滓晒涛丝暴隋锁鞍渔揣蜂眺沉椽拢烯锡展辨傣踊桔吐角捅履烃蘸唁访控尧稼肘版弹聚苯乙烯磺酸盐生产工艺及应用配方纱孵开峰扳净破块厕揽奇幕谰辑枯例苯拖校渔潘锯棺瘤钩陕届囚琐猫悉矫荒购鼠郑相溪款差仪猿抓史甜絮澎窒逮鲤奖沽观寝跋鸟堰改诞靖獭祈肠命碳茁链免墩帜隆复靳搀亲军莎道仁罕蒂斟沫淋费钢俘毋下颅百凯浴秃钞充魂跪蚕舜娜台倦限可聘之酚疙醒堪疲列慌王苫屎茸咏苇釜愚穷萎肉使吮新亦神钠晕虾氢咆述编技忽邻萎膝鼓窍鹿痰述褥非揖害娶辩涪右锄梗绰锐骨栓构沂弓蚕瞅箔踞盆淄蹲萨烽宗泻防妒杀辛第抹峙恋荧是疡益公戮畅仑疥艰速牟也扰砖确名域峙晾蒙秆萄害调捅尺偶任泡雇委玫协肛腮近桓例铝哉功绞讹磷合央场圣毙汰颜豁勋炕榆俺歪光笑颤誊浆痴踊锹蛀申提斡去庐塑1国内外研究现状、市场的当前及前景份额,竞争对手的情况,采取的市场策略。1.1聚苯乙烯磺酸盐国内外生产和应用现状、日本一些化学公司在制备技术的开发方面作过很多工作,产品主要用作水煤浆分散剂。主要厂家有LION和花王等。国外生产聚苯乙烯磺酸盐的产品牌号有VersaT(NationalStarch&ChemicalCorp.)、Polyfon(WestvacoCorp.)和Varisperse(BorregaardLuduesFriesLtd.)等。国内目前还没有大规模生产聚苯乙烯磺酸盐分散剂的厂家。南京大学表面和界面化学工程技术研究中心对聚苯乙烯磺酸盐的制备方法曾做过一些研究,并试用作水煤浆添加剂,但规模较小。2产品的合成工艺路线2.1聚苯乙烯磺酸盐合成方法讨论聚苯乙烯磺酸盐有两种合成方法,一种是苯乙烯单体先磺化为苯乙烯磺酸,再聚合为聚苯乙烯磺酸,然后中和为盐;另一种方法是苯乙烯先聚合,再磺化,然后中和为盐。苯乙烯不能直接磺化,因此前一种方法通常是先将2-卤代乙苯磺化,再用碱脱去氯化氢制得苯乙烯磺酸单体,然后再聚合。此方法过程复杂,成本较高。后一种方法所用的磺化原料聚苯乙烯可以通过阴离子、阳离子或自由基聚合得到,也可以通过降解废旧聚苯乙烯塑料得到。2.1.1苯乙烯低聚物的合成作为聚电解质的聚苯乙烯磺酸盐的相对分子质量在1000~100000范围内较适宜,因此磺化原料聚苯乙烯的相对分子质量不能太高。低相对分子质量的聚苯乙烯的合成方法大体可分为离子聚合法、聚苯乙烯降解法和自由基聚合法。(1)阴离子聚合阴离子聚合是合成中低相对分子质量聚苯乙烯的传统方法。这种聚合反应采用碱金属有机化合物作为引发剂,增长链的偶合和负离子转移机会较少,终止反应主要通过链转移完成。因此聚合产物的相对分子质量很容易控制,相对分子质量分布很窄。如果排除小分子的链转移,就可以得到不终止的“活”的聚合物链。这样一来,通过调节单体浓度和引发剂浓度比,即可得所需聚合度的聚苯乙烯,而且相对分子质量分布很窄。此方法常用于合成测试相对分子质量用的标样。阴离子聚合对杂质极其敏感,聚合原料及试剂需要严格精制,否则会导致聚合反应催化剂中毒,致使活性降低甚至不能聚合,因此,制备过程所需设备较多。(2)阳离子聚合阳离子聚合采用金属卤化物为催化剂,在室温下可合成相对分子质量为1000~10000的低相对分子质量聚苯乙烯。山田顺一等采用四氯化锡为催化剂,水为助催化剂,在二氯乙烷溶剂中,于84℃下合成了重均相对分子质量5000左右,相对分子质量分布为2.0~2.8的苯乙烯低聚物。这种聚合方法对反应条件要求也很苛刻。(3)高聚物降解用降解高相对分子质量聚苯乙烯的方法生产低相对分子质量聚苯乙烯的研究报道已有很多。降解温度在300℃以下时,降解反应不生成挥发性物质,仅降低聚合度。控制热降解条件可得平均相对分子质量在3000~60000的聚苯乙烯。由于热降解反应条件难控制,易产生局部过热现象,因此导致降解产物中从单体到高聚物都存在,相对分子质量分布极宽。近几年来,废聚苯乙烯催化降解技术发展很快,已成功地完成了利用废聚苯乙烯制备苯乙烯单体、汽油和柴油组分。催化降解采用裂化催化剂,反应条件温和,而且能使裂解程度得到一定控制。虽然所得裂解产物相对分子质量分布比热裂解窄,但相对分子质量分布仍远大于2。由于废聚苯乙烯来源不稳定,因此至今未能进行稳定的工业化生产。(4)自由基聚合自由基聚合合成低聚物的关键是要选择适当的链转移剂和反应体系。链转移剂的链转移常数越接近“l”越理想。此时无论是聚合产物的重均相对分子质量还是数均相对分子质量都与转化率无关,相对分子质量分布窄。链转移常数远离“1”时,相对分子质量分布很宽。四氯化碳是苯乙烯自由基低聚常用的链转移剂,链转移常数为0.0093,乙酞基溴的链转移常数为0.86。Gannon等用过氧化苯甲酞为引发剂,用二卤化物为链转移剂,合成了两端带卤素的低聚苯乙烯。近年来,烯丙基硫化物类链转移剂发展得很快,烯丙基硫化物的链转移常数较高,如CH2=C(Ph)-CH2-S-C(CH3)3的链转移常数为1.24,CH2=C(Ph)-CH2-S-CH2-COOH的链转移常数为0.95。把它作为苯乙烯自由基聚合链转移剂,可以得到含“C=C”末端的可控相对分子质量聚苯乙烯。α-甲基苯乙烯二聚体(2,4-二苯基-4-甲基-1-戊烯,简称αMSD)也是一种优良的自由基聚合链转移剂,它本身是一种活性烯丙基化合物。2.1.2磺化剂的选择为了减少磺化后剩余的废酸,三氧化硫是最合适的磺化剂。但是,对于烃类高分子聚合物的磺化反应,通常需要添加催化剂或找一种合适的溶剂才能使反应速度适当,按要求磺化。聚苯乙烯与磺化剂直接反应,可在芳香环上直接引入磺酸基团。能在芳香环上直接引入磺酸基团的磺化剂有硫酸及氯磺酸,但从机理上讲最好的是与路易斯碱相连的是三氧化硫电子供给体,其次是酞基磺酸酯。路易斯碱包括二氧环己烷、四氢吠喃、三烷基磷酸酯、三乙胺、吡啶及羧酸等,酰基磺酸酯有乙酰磺酸酯、丙酰磺酸酯、丁酰磺酸酯等。三氧化硫本身不能溶解聚苯乙烯,而其活性又非常大。因此,人们希望寻求一种体系,它既可以有效地控制三氧化硫的活性,又是聚苯乙烯的共溶体系。但是上述三氧化硫与路易斯碱的混合体系常常无法满足要求。Suter研究了二氧环己烷/三氧化硫混合体系,结果表明,当二氧环己烷与三氧化硫的比率为l:1和2:1时,三氧化硫活性相同,即使在0℃也能将苯环磺化。三乙胺/三氧化硫体系则是另一种情况,由于它存在非常强大的分子内部作用力,即使与水也不能快速反应。吡啶能与三氧化硫形成一种致密的混合体系,即使在加热的条件下三氧化硫也不能将苯环磺化。烷基磷酸酯/三氧化硫、羧酸/三氧化硫体系中三氧化硫的活性可以有效地控制,适合生产无交联的水溶性聚苯乙烯磺酸盐。2.1.3磺化方法除了三氧化硫以外,硫酸、发烟硫酸、氯磺酸和磺酸酯都能磺化聚苯乙烯。(1)以硫酸为溶剂的磺化方法在硫酸为溶剂和磺化剂的磺化方法中,Neihof和Carroll法是具有代表性的方法。Neihof法是将5~10倍聚苯乙烯质量的浓硫酸和1%聚苯乙烯质量的Ag2SO4置于同一容器中,加热至100℃恒温搅拌,反应时间由聚苯乙烯的相对分子质量大小及所需的磺化度来决定。一般来讲,相对分子质量越大,浓硫酸的用量越多,反应时间越长。MasaakiKato利用该法反应20h制得了水溶性磺化产品,其磺化度为91%。Carroll法是将按相对分子质量分级后的聚苯乙烯粉末在室温下快速与100%H2SO4相混合,Ag2SO4事先加入H2SO4中,磺化过程在5~15min内完成。反应产物经稀释、渗析、超滤浓缩,然后冷冻干燥贮存。利用Neiliof法磺化聚苯乙烯,虽然能得到完全水溶性产品,但产品存在某种程度的降解和交联。控制磺化条件(时间、温度、浓度以及磺化剂种类)可以尽量降低产品的交联深度。通常是高温、高浓度反应时更易交联。在100%H2SO4中磺化聚苯乙烯使之成为聚苯乙烯磺酸,是一个非均质反应。最初聚苯乙烯是不溶于H2SO4的,但当反应生成的聚苯乙烯磺酸在混合溶液中起到乳化作用时,最初的非均相体系便成为一种非常粘的透明液体。在催化剂Ag2SO4存在下,反应速率很高,5~10min后磺化度即可接近100%,产品回收率达90%,产品是一种完全水溶性的高分子。(2)以氮代烷烃为溶剂的磺化方法以氯代烷烃为溶剂,三氧化硫为磺化剂的磺化方法有Roth法、Turbak法、Makowski法。此外,还有以氯磺酸和发烟硫酸为磺化剂的磺化法。Roth在纯净干燥的四氯化碳溶剂中,以液态三氧化硫为磺化剂,分别研究了常压和加压条件下不同温度范围磺化聚苯乙烯的过程,认为适当控制压力并在较低温度下(-15~30℃)可使交联降低到最低程度。但该体系不可能完全消除交联,尤其是对相对分子质量超过1×106护的聚苯乙烯来说更是如此。Roth还提出了在四氯化碳和液体二氧化硫混合溶剂中,以液态三氧化硫为磺化剂的磺化方法。此方法对于相对分子质量超过1×106护的聚苯乙烯可使交联度降低,但由于引入了液体二氧化硫使操作条件更为苛刻。Turbak在1,2-二氯乙烷溶剂中研究了三氧化硫/烷基磷酸酯磺化体系的磺化效果,认为该体系可以有效地控制三氧化硫的活性。他举例说明当三氧化硫:三烷基磷酸酯=l:1时,该体系不会很快与芳香环反应,但会很快使醇磺化;当二者之比提高到3:1时该体系便能很容易地使苯和芳香族聚合物(如聚苯乙烯)磺化,生成基本无交联的水溶性高分子产品。Turbak法适合于使相对分子质量在1×106~5×106之间的聚苯乙烯磺化。Makowski法的基本过程是:将聚苯乙烯溶解在约为其5倍质量的1,2-二氯乙烷溶剂中,将溶液加热到50℃后加入乙酰磺酸酯溶液若干,搅拌60min,用乙醇终止反应。产物蒸馏除去溶剂后沉淀、过滤、真空干燥。磺化度与磺化剂的用量在一定范围内成线性关系。该法是一种磺化聚苯乙烯较为有效的方法,且磺化剂乙酰磺酸酯来源充足易得,易于工业化,缺点是磺化度太低,产品不能水溶,无法用作聚电解质,只可作为塑料助剂。吴安明以l,2-二氯乙烷为溶剂,将聚合和磺化连续进行,以氯磺酸为磺化剂在5~30℃下磺化Zh,再经沉淀、过滤、中和、干燥得到最终产品。在以1,2-二氯乙烷为溶剂的发烟硫酸磺化方法中,磺化质点是H2SO4结合的三氧化硫,产品的磺化度低时产品溶于1,2-二氯乙烷,产品的磺化度高时产品转移到H2SO4相中,由于反应温度较高(约50℃),产品交联度较高。由于大量H2SO4的存在,使反应后处理过程复杂并产生大量废渣。(3)以环烷烃为溶剂的成化方法与氯代烷烃相比,环烷烃的毒性较小,但是对原料聚苯乙烯的溶解度小,对三氧化硫的溶解度也小,而且三氧化硫与环烷烃可以发生反应,所以用其作溶剂难度较大。下面介绍几种己见报道的以环烷烃为溶剂的磺化方法,这些方法实现工业化仍存在
本文标题:聚苯乙烯磺酸盐生产工艺及应用配方资料
链接地址:https://www.777doc.com/doc-3776524 .html