您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版八年级数学下册--第十八章平行四边形单元测试题(含答案)
八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。1.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角2.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=ODB.OA=OC,AB∥CDC.AB=CD,OA=OCD.∠ADB=∠CBD,∠BAD=∠BCD3.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°4.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.245.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2B.3.5C.7D.146.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为()A.B.C.D.27.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BADB.BD=CDC.AE=EDD.DE=DB8.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个B.1个C.2个D.3个9.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等10.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为()A.4∶1B.5∶1C.6∶1D.7∶11.如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为.2.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.3.如图,矩形ACD面积为40,点P在边CD上,PE上AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=.4.如图,在△ABC中,AB=AC,BC=6,点F是BC的中点,点D是AB的中点,连接AF和DF,若△DBF的周长是11,则AB=.5.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为.6.如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.三.解答题1.如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.2.如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD.(1)求证:OE⊥DC.(2)若∠AOD=120°,DE=2,求矩形ABCD的面积.3.如图,在矩形ABCD中,BD的垂直平分线分别交AB、CD、BD于E、F、O,连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若AB=8cm,BC=4cm,求四边形DEBF的面积.4.如图,在△ABC中,AD是△ABC的高线,CE是△ABC的角平分线,它们相交于点P.(1)若∠B=40°,∠AEC=75°,求证:AB=BC;(2)若∠BAC=90°,AP为△AEC边EC上中线,求∠B的度数.5.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.6.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.7.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.参考答案一.选择题1.C.2.C.3.B.4.C5.B6.B.7.D.8.B9.B10.B二.填空题(共6小题)1.1.2.33.44.8.5.3.6.三.解答题(共7小题)1.证明:(1)∵△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E,∴DE是△ABC的中位线,∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE;(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°﹣65°﹣65°=50°,∵DE是△ABC的中位线,∴AE=BE,∵AE=DE,∴BE=DE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠DBC=25°,∴∠EDB=25°.2.(1)证明:∵DE∥AC,CE∥BD,∴DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ODEC是矩形,∴OD=OC=OA=OB,∴四边形ODEC是菱形,∴OE⊥DC,(2)∵DE=2,且四边形ODEC是菱形∴OD=OC=DE=2=OA,∴AC=4∵∠AOD=120,AO=DO∴∠DAO=30°,且∠ADC=90°∴CD=2,AD=CD=2∴S矩形ABCD=2×2=43.证明:(1)∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,且OB=OD∴四边形BEDF是平行四边形,∵EF垂直平分BD∴BE=DE∴四边形BEDF是菱形(2)∵四边形BEDF是菱形∴BE=DE,在Rt△ADE中,DE2=AE2+DA2,∴BE2=(8﹣BE)2+16,∴BE=5∴四边形DEBF的面积=BE×AD=20cm2.4.(1)证明:∵∠B=40°,∠AEC=75°,∴∠∠ECB=∠AEC﹣∠B=35°,∵CE平分∠ACB,∴∠ACB=2∠BCE=70°,∠BAC=180°﹣∠B﹣∠ACB=180°﹣40°﹣70°=70°,∴∠BAC=∠BCA,∴AB=AC.(2)∵∠BAC=90°,AP是△AEC边EC上的中线,∴AP=PC,∴∠PAC=∠PCA,∵CE是∠ACB的平分线,∴∠PAC=∠PCA=∠PCD,∵∠ADC=90°,∴∠PAC=∠PCA=∠PCD=90°÷3=30°,∴∠BAD=60°,∵∠ADB=90°,∴∠B=90°﹣60°=30°.5.(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=8.在▱ABCD的面积中,BC=CD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵,∴△AEM≌△DNM(ASA),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.6.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.7.解:(1)DE=2﹣;(2)BF=2﹣;(3)DG=3﹣4.
本文标题:人教版八年级数学下册--第十八章平行四边形单元测试题(含答案)
链接地址:https://www.777doc.com/doc-3781863 .html