您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 黄冈中学初三入学考试数学试题
黄冈中学2012届初三入学考试数学试题一、填题(每小题3分,满分30分)1、—2的倒数为_____________.2、化简:=_____________.3、分解因式:_____________.4、函数中,自变量x的取值范围是_____________.5、如图1,已知直线AB∥CD,直线EF与直线AB、CD分别交于点E、F,且∠1=70°,则∠2=_____________.6、已知一组数据为:8,9,7,7,8,7,则这组数据的中位数为_____________.7、如图2,四边形ABCD中,AB∥CD,要使ABCD为平行四边形,则可添加的条件为_____________(填一个即可).8、如图3,在△ABC中,∠B=45°,cos∠C=,AC=5a,则△ABC的面积用含a的式子表示是_____________.9、如图4,△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.若AB=12cm,那么的长是_____________cm(保留三个有效数字).10、如图5,一个数表有7行7列,设aij表示第i行第j列上的数(其中i=1,2,3,…,j=1,2,3,…,).例如:第5行第3列上的数a53=7,则(1)(a23-a22)+(a52-a53)=_____________.(2)此数表中的四个数满足(anp-ank)+(amk-amp)=_____________.二、选择题(每小题3分,满分18分)11、四边形的内角和为()A.90°B.180°C.360°D.720°12、某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为()A.B.C.D.13、已知⊙O1的半径为5cm,⊙O2的半径为6cm,两圆的圆心距O1O2=11cm,则两圆的位置关系为()A.内切B.外切C.相交D.外离14、下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()15、已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1B.—2C.1或-2D.2或-116、如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为()A.B.1C.2D.三、解答题17、(6分)计算:18、(7分)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A、B、C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳舞;如果摸到的是C球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?19、(7分)如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.20、(8分)“城市让生活更美好”,上海世博会吸引了全世界的目光,五湖四海的人欢聚上海,感觉世博.5月24日至5月29日参观世博会的总人数为230万,下面的统计图是每天参观人数的条形统计图:(1)5月25日这天的参观人数有_____________万人,并补全统计图;(2)这6天参加人数的极差是_____________万人.(3)这6天平均每天的参观人数约为多少万人?(保留三位有效数学)(4)本届世博会会期为184天,组委会预计参观人数将达到7000万,根据上述信息,请你估计:世博会结束时参观者的总人数能否达到组委会的预期目标?21、(7分)如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:,,,以上结果均保留到小数点后两位.)22、(8分)今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?23、(8分)如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BO∥ED,作弦EF⊥AC于G,连结DF.(1)求证:AB为⊙O的切线;(2)若⊙O的半径为5,sin∠DFE=,求EF的长.24、(8分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170-2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?25、(13分)如图,四边形ABCO是平行四边形,AB=4,OB=2抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.(1)求抛物线的解析式;(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?显示答案答案:1、_2、3、4、x≥35、6、7.57、AB=CD或∠A=∠C或AD//BC等8、14a29、12.610、00解析:17、解:原式=1-8+3+2=-2.18、解:法一:列表如下:ABCAAAABACBBABBBCCCACBCC法二:画树状图如下:因此他表演的节目不是同一类型的概率是.19、解:猜想:BM=FN证明:在正方形ABCD中,BD为对角线,O为对称中心,∴BO=DO,∠BDA=∠DBA=45°.∵△GEF为△ABD绕O点旋转所得,∴OB=OF,∠F=∠BDA,∠BOM=∠FON.∴△OBM≌△OFN(ASA),∴BM=FN.20、解:(1)35万;补图略(2)51-32=19万;(3)230÷6≈38.3万;(4)38.3×184=7047.27000,估计世博会结束时,参观的总人数能达到组委会的预期目标.显示答案21、解:(1)在Rt△ABC中,∠ABC=45°,∴AC=BC=AB·sin45°=.在Rt△ADC中,∠ADC=30°,∴AD=,∴AD-AB=-4≈1.66,∴改善后滑滑板会加长约1.66米.(2)这样改造能行,理由如下:∴6-2.07≈3.933,∴这样改造能行.显示答案22、解:设购买甲种设备台,则购买乙种设备(12-)台,购买设备的费用为:;安装及运输费用为:.由题意得:解之得:2≤x≤4.∴可购甲种设备2台,乙种设备10台或购甲种设备3台,乙种设备9台,或购甲种设备4台,乙种设备8台.显示答案23、(1)证明:连结OE.∵ED∥OB,∴∠1=∠2,∠3=∠OED,又OE=OD,∴∠2=∠OED,∴∠1=∠3.又OB=OB,OE=OC,∴△BCO≌△BEO(SAS),∴∠BEO=∠BCO=90°,即OE⊥AB,∴AB是⊙O切线.(2)解:∵∠F=∠4,CD=2·OC=10;由于CD为⊙O的直径,在Rt△CDE中有:ED=CD·sin∠4=CD·sin∠DFE=,∴.在Rt△CEG中,,∴EG=,∴.24、解:(1)y2=500+30x.(2)依题意得:,解得:25≤x≤40.(3)∵W=x·y1-y2=x(170-2x)-(500+30x)=-2x2+140x-500,∴W=-2(x-35)2+1950,而253540,∴当x=35时,W最大=1950,即,月产量为35件时,利润最大,最大利润是1950万元.25、解:(1)四边形ABCO是平行四边形,∴OC=AB=4,抛物线过点B,∴c=2.由题意,有解得所求抛物线的解析式为(2)将抛物线的解析式配方,得∴抛物线的对称轴为x=2,欲使四边形为等腰梯形,则有OP=QE,即BP=FQ,(3)欲使以点P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,有或即PB=OQ或OB2=PB·QO.①若P、Q在轴的同侧.当BP=OQ时,=,当时,即解得②若在轴的异侧.当PB=OQ时,,∴t=4.当OB2=PB·QO时,,即,解得,故舍去,∴当或或或秒时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似.
本文标题:黄冈中学初三入学考试数学试题
链接地址:https://www.777doc.com/doc-3815757 .html