您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 履带底盘设计文献综述
文献综述题目牙轮钻机的履带底盘设计学生姓名***专业班级机械设计制造及其自动化**级**班学号541002010***院(系)机电工程学院指导教师(职称)**(副教授)完成时间201*年*月**日履带底盘设计专业班级:机设自动化**级**班姓名:***学号:541002010***牙轮钻机的履带地盘设计摘要:履带式底盘的结构特点和性能决定了它在工程机械作业中具有明显的优势。根据整体承重对牙轮钻机的要求,进行履带式牙轮钻机底盘的设计。项目研究对提高工程机械设计水平和履带行驶技术水平具有重要意义。该研究应用农业机械学、汽车拖拉机学、机械设计、机械原理等理论,对履带式行走底盘的驱动行走系统进行了理论分析与研究,完成了履带底盘主要工作参数的确定和力学的计算。利用AutoCAD、Pro/E等工程软件完成了底盘的整体设计,达到了技术任务书的要求。从而得到了整体机架与其相关配合的结构框架,对以后的进一步分析提供了一定的资料。关键词:履带;底盘;行走装置;设计1.该研究的目的及意义履带式拖拉机的结构特点和性能决定了它在重型工程机械作业中具有明显优势。首先,支承面积大,接地比压小。比如,履带推土机的接地比压为0.0002~0.0008N/㎡,而轮式推土机的接地比压一般为0.002N/㎡。因此,履带推土机适合在松软或泥泞场地进行作业,下陷度小,滚动阻力也小,通过性能较好。其次,履带支承面上有履齿,不易打滑,牵引附着性能好,有利于发挥交大牵引力。最后,履带不怕扎、割等机械损伤。因此,综合考虑,本设计围绕履带式行走底盘的相关资料对其进行相应的设计及创新。主要以参考工程机械为主,结合现有的底盘进行设计。此款履带拖拉机适用于我国大型露天矿山。履带底盘设计专业班级:机设自动化**级**班姓名:***学号:541002010***2.履带行走装置的结构组成及其工作原理履带行走装置有“四轮一带”(驱动轮、支重轮、导向轮、拖带轮及履带),张紧装置和缓冲弹簧,行走机构组成。履带行走机构广泛应用于工程机械、拖拉机等野外作业车辆。行走条件恶劣,要求该行走机构具有足够的强度和刚度,并具有良好的行进和转向能力。履带与地面接触,驱动轮不与地面接触。当马达带动驱动轮转动时,驱动轮在减速器驱动转矩的作用下,通过驱动轮上的轮齿和履带链之间的啮合,连续不断地把履带从后方卷起。接地那部分履带给地面一个向后的作用力,而地面相应地给履带一个向前的反作用力,这个反作用是推动机器向前行驶的驱动力。当驱动力足以克服行走阻力时,支重轮就在履带上表面向前滚动,从而使机器向前行驶。整机履带行走机构的前后履带均可单独转向,从而使其转弯半径更小。3.履带行走机构研究现状自从20世纪初履带行走机构在坦克上的成功应用,随着科技的发展,履带行走机构出现了大量变型产品,分别应用于挖掘机、推土机、掘进机、智能机器人等产品上,对其研究也越来越广泛。闫清东等对履带行走机构进行坡道转向特性的研究,推导出转向所需的制动力和牵引力随着履带车辆方位角的变化关系,分析了坡道转向时内外侧履带所需的制动力和牵引力的变化规律,同时指出了导致履带车辆坡道转向的不稳定因素[5]。龚计划以小型挖掘机履带行走机构为研究对象,通过采用经验公式和对比同类产品设计参数,确定了履带行走机构关键设计参数,并采用参数化方法对履履带底盘设计专业班级:机设自动化**级**班姓名:***学号:541002010***带行走机构主要零部件进行设计[6]。刘莉提出了根据设计要求确定履带行走机构参数的方法,并根据履带行走机构行驶力学,采用离散复合形法对履带行走机构的传动系统进行优化[7]。李军等采用测量圆锥指数的方法预测履带行走机构的牵引性能及爬坡性能,从而分析其在软路面的通过性[8]。宿月文等根据履带车辆行驶力学平衡原理,提出一套牵引动力匹配算法,并与实车测试功率结果进行对比,验证了该算法的正确性[9]。陈兵等对履带行走机构的硬地面原地转向特性做了研究,通过分析得出履带车辆所受的阻力矩与转向速度无关[10].随着计算机技术的发展,通用机械系统动力学软件日趋完善,国内外学者开始更多的采用计算机数值分析法对履带行走机构开展研究。美国学者Q.Li和P.D.Ayers等成功开发建立了数学分析模型用来预测不同地形对履带行走机构的影响[11]。新加坡学者Z.S.Liu等采用数值方法对履带行走机构进行分析,首先在ADAMS软件中求出履带行走机构所受到的力,然后通过有限元法在MSC/NASTRAN中得出履带行走机构的震动响应,最后在SYSNOISE软件中预测履带行走机构的噪音,从而改进履带行走机构的设计参数[12]。北京理工大学学者陈泽宇,张承宁在Matlab/Simulink中建立动力学仿真模型,讨论了履带中心距和履带接地长宽比对履带式车辆的稳定性和转向难度的影响[13-14];大连理工大学学者田洪杰、王国明分别在Matlab/Simulink和recurdyn中建立分析模型,对履带行走机构转向性能做了深入的研究[15-16];吉林大学的学者孔德文、隋文涛等在ADAMS环境中建立了挖掘机履带行走机构仿真模型,分别分析了前进和后退两种工况,发现后退行驶行走阻力大于前进行驶的行走阻力,后退行驶比前进行驶更平稳[17];吉林大学学者王得胜对履带行走机构的履带架进行有限元分析,并提出对履带架的一些改进的地方[18];太原理工大学学者凌静秀通过动力学仿真和有限元分析对履带板结构进行改进优化,提高了履带行走机构的对地附着力和排泥功能[19]。从以上的研究现状可以看出,目前对履带行走机构研究主要集中在履带行走机构的性能、结构的优化方面以提高履带行走机构的质量。然而市场经济的发展对履带行走机构提出了越来越多的个性化和多样化的需求,企业不仅应该提高履带行走机构的质量,同时还应尽可能满足这些需求。因此本文将采用模块化设计方法,通过设计出不同的模块,并以这些模块的配置来快速的满足市场提出的个性化和多样化需求。履带底盘设计专业班级:机设自动化**级**班姓名:***学号:541002010***4.国外的研究与发展1989年W.C.Evans和D.S.Gove公布了在硬地面和已耕地上,1种橡胶履带与1种四轮驱动拖拉机牵引性能的实验结果。在相同的底盘结构情况下,橡胶履带牵引效率与动态牵引比高,在已耕地和硬地面上其最大牵引效率是85%~90%,四轮驱动拖拉机是70%~85%。1988年D.Culshaw试验对比了摩擦驱动橡胶履带车辆和子午线轮胎驱动拖拉机,橡胶履带的拉力比轮式多25%。同时对比了装橡胶履带的小型自卸车和类似重量的传统拖拉机,试验表明履带自卸车是轮式拖拉机拉力的2倍并且在软土上车辙小得多。在支撑良好的情况下,橡胶履带与钢履带性能相似。1990年J.H.Esch,L.L.Bashford,K.VonBar2gen,R.E.Ekstrom在Nebraska大学1986年与1987年实验结果基础上,评价和对比了橡胶履带拖拉机与四轮驱动拖拉机在4种地面(未耕、已耙过、已犁过燕麦茬地和玉米茬地)的牵引性能(动力牵引比、牵引系数与打滑率的关系)。对比的橡胶履带拖拉机质量为13970kg,履带宽635mm,10个前进挡。四轮驱动拖拉机质量与之近似,为13010kg,12个前进挡。两者均为动力换挡,实验时的最高限速均为10.5km/h。1993年日本学者T.Muro,R.Fukagawa,S.Kawahara在质量为4t的橡胶履带拖拉机上,为找到最合适的抓地爪形状,以获得最大的有效驱动力与破断力,分析了各种斜坡柏油路面的牵引与破断性能。结果表明橡胶抓地爪最合适的形状是高5cm的等边梯形。斜角增加,有效的牵引与破断效果降低。同时在驱动状态斜角越大,法向(normal)接触压强趋向于朝着橡胶履带后部增加,对破断力的影响则相反。1993年M.J.Dwyer,J.A.Okello,A.J.Scarlett等介绍了西尔索伊研究所(SilsoeResearchInstitute)在橡胶履带上所作的工作,建立预测橡胶履带性能的两种数学模型。一种假设履带是无限刚性,一种假设是无限柔性。用两种模型预测的性能和从一专用实验车辆的试验履带装置上得到的田间数据相比,实测数据在两种模型预测值之间。试验车数据显示,接地长是影响牵引性能的最重要的因素,在接地长上的压力分布也是重要的。但履带的张紧在一定的范围与所试验的田间条件下是不重要的。图7是橡胶履带车辆和四轮驱动拖拉机的牵引效率,在不同滑转率下的计算值与试验结果对比,结果显示橡胶履带最高效率履带底盘设计专业班级:机设自动化**级**班姓名:***学号:541002010***比轮式高10%~20%。1994年加拿大Alberta农业机械研究中心(Al2bertaFarmMachineryResearchCentre)ReedTurner研究了在四轮驱动Case2IH9250拖拉机上装4个Gilbert和Riplo“GripTrac”橡胶履带驱动装置。1996年K.Watanabe、M.Kitano、K.Takano、H.Kato对橡胶履带用于高速越野车辆进行了研究。橡胶履带装置的滚动阻力比轮胎大得多,文中描述了不同运行条件下,如初始张紧、履带速度、橡胶履带的温度对滚动阻力的影响。1995年卡特彼勒公司正式向世人揭示了它10年前推出的Challenger65橡胶履带拖拉机,是在其4项结构研究成果基础上诞生的:(1)橡胶履带得益于无轮辋轮胎项目的研究。(2)独特的行走系参考CATSA型提高速度的研究与L系列高置驱动轮、平衡台车项目的研究。(3)全动力换挡传动系、现代驾驶室与操纵借鉴于铰接四轮驱动拖拉机的研制项目。(4)液压差速转向机构来源于CAT推土机的液压差速转向机构。卡特彼勒的研究证明橡胶履带拖拉机在未耕土壤与已耕土壤上的牵引性能都比四轮驱动拖拉机有明显的提高(见图13)。1997年美国迪尔公司也发表了它对这一问题的研究,对比了橡胶履带拖拉机与四轮驱动拖拉机在不同地面的牵引性能与对地面的压强等。数据表明(见图14),两者的差距比图13显示的要小一些。1998年J.A.Okello、M.Watany、D.A.Crolla建立了预测橡胶履带在农业软地面上的牵引性能与支重轮下接地压力的模型,此模型考虑到各支重轮对土壤连续作用的影响。实验用土壤剪切与下沉实验得到的土壤强度参数,成功地模仿了单条橡胶履带装置在各支重轮连续作用下弹塑性土壤变形的效果。在一系列土壤条件下,理论计算与实验结果比较吻合。1999年日本学者ShigeoAwazu、YoshiakiKimura、ShunichiShibasaki、KunihikoUchida发表了对5条履带转向车辆的研究。研究对象是用于雪地和泥泞地的车辆,用4个独立的橡胶履带装置代替四轮驱动的4个轮胎,接地面积比轮胎增加15倍。其在类似滑雪场的深雪地与压实的雪地以及在泥泞地面上,操作自如。和雪地车与工程机械等普通履带车辆不同,它在硬路面上能象汽车一样转向。为了提高附着能力与自洁能力,橡胶履带的接地齿通常为与行驶方向垂直或倾斜的直线齿。1999年Desrial和NobutakaIto研究并确定了圆形接地齿橡胶履带的原理。圆形接地齿与铰接式转向并用被证明能减少转向阻力和提高牵引性能。论文讨论了在铰接式车辆上,考虑附着性能及下陷量,确定带圆形接地齿履带底盘设计专业班级:机设自动化**级**班姓名:***学号:541002010***的橡胶履带参数的方法。此外,履带拖拉机国际上的竞争对手是卡特匹勒公司的橡胶履带拖拉机系列产品。一拖公司的产品无论是技术水平、还是生产能力与其相比都不具备竞争能力,只有价格有吸引力,但从性能价格比分析,一拖产品还是处于劣势。因此,公司的新一代大功率橡胶履带拖拉机将尽快投放市场,借以巩固传统市场,发挥竞争优势。5.总结本次设计是在弄清楚履带底盘的整体结构的基础上重点对行驶机构进行设计的过程。首先是确定任务要求的各项参数,然后根据这这些具体参数进行一步步的计算,最后把各部分设计整合并进行细节修改。通过本次文献综述的整理,
本文标题:履带底盘设计文献综述
链接地址:https://www.777doc.com/doc-3825260 .html